Передвижение питательных веществ по растению. По каким клеткам происходит передвижение органических веществ Как передвигаются органические вещества по стеблю

Передвижение минеральных и органических веществ по растению имеет очень большое значение, так как это процесс, с помощью которого осуществляется физиологическая взаимосвязь отдельных органов. Между органами, поставляющими питательные вещества, и органами, потребляющими их, создаются так называемые донорно-акцепторные связи. Донором минеральных питательных веществ служит корень, донором органических веществ - лист. В этой связи в растениях существуют два основных тока питательных веществ - восходящий и нисходящий. Большую роль в изучении путей передвижения отдельных питательных веществ сыграл прием кольцевания растений. Этот прием заключается в наложении кольцевых вырезок на стебель растения; при этом кора (флоэма) удаляется, а древесина (ксилема) остается неповрежденной. С помощью этого приема еще в конце XVII в. итальянским исследователем М. Малышги было показано, что восходящий ток воды с минеральными веществами идет по ксилеме, нисходящий ток органических веществ из листьев - по элементам флоэмы. Вывод этот был сделан М. Малышги на основании того, что над кольцевой вырезкой листья оставались тургесцентными, несмотря на удаление коры, в них продолжала поступать вода. Ток органических веществ приостанавливался, и это приводило к образованию над вырезкой утолщении (наплывов). Ряд уточнений в вопрос о путях и направлении передвижения веществ по растению внесли исследования с применением меченых атомов. В настоящее время ученые считают, что система транспорта у растений включает внутриклеточный, ближний и дальний транспорт. Ближний транспорт - передвижение веществ между клетками внутри органа по неспециализированным тканям, например по апопласту или симпласту. Дальний транспорт - это перемещение веществ между органами по специализированным тканям - проводящим пучкам, т. е. по ксилеме и флоэме. Вместе ксилема и флоэма образуют проводящую систему, которая пронизывает все органы растения и обеспечивает непрерывную циркуляцию воды и веществ.

Передвижение воды по растению

Вода, поступившая в клетки корня под влиянием разности водных потенциалов, которые возникают благодаря транспирации и корневого давления, передвигается до проводящих элементов ксилемы. Согласно современным представлениям, вода в корневой системе может перемещаться в радиальном направлении тремя путями: апопластическим, симпластическим, трансмембранным. Еще в 1932 г. немецкий физиолог Э. Мюнх высказал мнение о существовании в корневой системе двух относительно независимых друг от друга объемов, по которым передвигается вода,- апопласта и симпласта. При транспорте по апопласту вода передвигается по клеточным стенкам, не проходя через мембраны. При симпластном транспорте вода проникает в клетку через полупроницаемую мембрану и далее перемещается по протопластам клеток, которые соединены между собой многочисленными плазмодесмами. При трансмембранном транспорте вода перетекает через клетки и при этом проходит, по крайней мере, две плазматические мембраны. Уже обсуждалось, что в последнее время много внимания уделяется аквапоринам - мембранным белкам, образующим в мембранах специализированные водные каналы и определяющим проницаемость для воды. Эксперименты показали, что передвижение воды по коре корня идет главным образом по апопласту, где она встречает меньшее сопротивление, и лишь частично по симпласту (С. Френч). Апопластный путь прерывается в эндодерме в связи с наличием поясков Каспари. Вместе с тем в апикальной части суберинизация отсутствует, поэтому вода легко проникает через эндодерму. Кроме того, в суберинизированных частях корня вода может проходить через пропускные клетки.

Сказанное показывает, что для транспорта в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану клеток эндодермы. Таким образом, мы имеем дело как бы с осмометром, у которого полупроницаемая мембрана расположена в клетках эндодермы. Вода устремляется через эту мембрану. В сторону меньшего (более отрицательного) водного потенциала. Далее вода поступает в сосуды ксилемы. По вопросу о причинах, вызывающих секрецию воды в сосуды ксилемы, имеются различные суждения. Согласно гипотезе Крафтса, это следствие выброса солей в сосуды ксилемы, в результате чего там создается повышенная их концентрация, и водный потенциал становится более отрицательным. Предполагается, что в результате активного поступления соли накапливаются в клетках корня. Однако интенсивность дыхания в клетках, окружающих сосуды ксилемы (перицикл), очень низкая, и они не удерживают соли, которые благодаря этому десорбируются в сосуды. Транспорт воды в корне зависит от интенсивности процесса дыхания. При помещении растений в условия, тормозящие дыхание корней (низкая температура, анаэробиоз или наличие дыхательных ядов), они транспортируют меньше воды. Предполагают, что это может быть связано с инактивированием аквапоринов. Торможение транспорта воды в корнях в аэробных условиях, возможно, объясняет факт завядания растений в переувлажненной почве. Дальнейшее передвижение воды идет по сосудистой системе корня, стебля и листа. Проводящие элементы ксилемы состоят из сосудов и трахеид. Опыты с кольцеванием показали, что восходящий ток воды по растению движется в основном по ксилеме. В проводящих элементах ксилемы вода встречает незначительное сопротивление, что, естественно, облегчает передвижение воды на большие расстояния. Правда, некоторое количество воды передвигается и вне сосудистой системы. Однако по сравнению с ксилемой сопротивление движению воды других тканей значительно больше. Это приводит к тому, что вне ксилемы движется всего от 1 до 10% общего потока воды. Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся все более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Именно поэтому густота жилкования листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. В связи с этим, как только в силу процесса транспирации возникает ненасыщенность водой клеточных стенок паренхимных клеток, она сейчас же передается внутрь клетки, водный потенциал которой падает. Вода передвигается от клетки к клетке благодаря градиенту водного потенциала. По-видимому, передвижение воды от клетки к клетке в листовой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше. По сосудам вода движется благодаря создающемуся в силу транспирации градиенту водного потенциала, градиенту свободной энергии (от системы с большей свободой энергии к системе с меньшей). Можно привести примерное распределение водных потенциалов, которое и вызывает передвижение воды: водный потенциал почвы (-0,5 бар), корня (-2 бар), стебля (-5 бар), листьев (-15 бар), воздуха при относительной влажности 50% (-1000 бар).

Однако получены экспериментальные данные, которые не позволяют рассматривать силу транспирации как единственную, обуславливающую восходящий ток воды по растению. Так, показано, что восходящий ток воды может осуществляться и при отсутствии транспирации. К этому же выводу приводят опыты, показывающие ритмическое секретирование устьичными клетками жидкой воды, а также зависимость передвижения воды от эндогенной энергии, поставляемых процессом дыхания. Это позволяет считать, что движущая сила транспорта воды в растении является суммой двух весьма различных по своей природе составляющих, условно названных метаболической и осмотической. Об этом уже упоминалось при рассмотрении вопроса о корневом давлении. Осмотическая составляющая представлена в корнях сугубо осмотическими явлениями, в стебле и листьях - гидростатической тягой, создаваемой градиентом водного потенциала в системе почва - растение - атмосфера. Температурный коэффициент Q10 этой составляющей близок к единице. Именно такая величина Q10 характерна для простых физических процессов. В то же время Q10 процесса транспорта воды значительно выше. Столь высокий температурный коэффициент свойственен сложным процессам цепного характера. Очевидно, транспорт воды за счет метаболической составляющей относится к разряду именно таких процессов. Согласно имеющимся экспериментальным данным, в формировании метаболической составляющей непосредственное участие принимают контрактильные системы паренхимных клеток (т. е. белки цитоскелета). Они могут играть роль сфинктеров, регулирующих просветы водных каналов (открывание-закрывание) в плазмодесмах. Благодаря их работе индуцируются ритмические микроколебания внутриклеточного (внутрисимпластного) гидростатического давления, которые внешне выражаются в короткопериодных (1-3 мин) автоколебаниях поступления воды в клетку (симпласт, ткань, орган) и водоотдачи (т. е. микропульсациях). Принципиально важное значение имеет факт противофазное автоколебаний водопоглощения и водоотдачи. Это свидетельствует о том, что процесс транспорта воды состоит из двух последовательных, ритмично чередующихся, относительно самостоятельных, хотя и тесно взаимосвязанных фаз: фазы сокращения, во время которой вода выделяется (выталкивается, секретируется) и последующей фазы расслабления, во время которой вода поглощается.

Выделение воды вызывает падение тургора и водного потенциала в целом, создавая предпосылку для поглощения следующей порции воды, вновь приводящего к возрастанию водного потенциала вплоть до того, что он из отрицательного становится положительным. После этого происходит новое сокращение. Именно фаза сокращения происходит с участием контрактильных систем и требует затраты энергии. Таким образом, вода поглощается и выделяется по градиенту водного потенциала, а не против него, т. е. согласно данной схеме, транспорт воды в термодинамическом понимании является пассивным. Возникающие за счет ритмической деятельности внутриклеточного сократительного аппарата микроколебания гидростатического давления паренхимных клеток являются механизмом, создающим локальные градиенты водного потенциала на пути водного тока и тем самым регулирующим скорость этого тока. Именно благодаря этому формируется метаболическая составляющая движущей силы транспорта воды в растении, играющая решающую роль в общей системе эндогенной регуляции. Под влиянием ингибиторов контрактильных систем или окислительного фосфорилирования (т. е. при нарушении энергоснабжения) противофазность исчезает, автоколебания затухают и транспорт воды тормозится (В.Н. Жолкевич).

Передвижение элементов минерального питания (восходящий ток)

Использование меченого фосфора позволило установить, что передвижение солей идет быстрее при усилении транспирации и замедляется при уменьшении этого процесса. Если листья закрыть полиэтиленовыми пакетами, то транспирация задержится, и скорость перемещения соответственно уменьшится. Эти опыты подтвердили, что передвижение питательных веществ в восходящем направлении идет по сосудам ксилемы вместе с водой. Однако скорость переноса растворенных веществ по ксилеме может отличаться от скорости передвижения воды. Это обстоятельство связано с тем, что растворенные вещества могут адсорбироваться стенками сосудов, а также передвигаться в радиальном направлении. В этом отношении интересные результат! были получены в опытах, где на определенном промежутке стебля кору (флоэму) тщательно отделяли от ксилемы. Между корой и ксилемой прокладывал! вощеную бумагу. Подготовленное таким образом растение помещали на пита тельную смесь, содержащую меченый калий. После пятичасовой экспозиции анализировались отдельные участки стебля. Оказалось, что передвижение калия в восходящем направлении идет главным образом по ксилеме. Вместе с те» в отщепленных участках флоэмы также было обнаружено некоторое количестве калия. Из этого следует, что в небольшом количестве восходящий ток идет и по ситовидным трубкам. Там, где расщепление не проводилось, калий почти равномерно распределялся между ксилемой и флоэмой, что служит доказательство» перемещения калия в радиальном направлении. Таким образом, основной ток минеральных солей из корневой системы происходит по ксилеме. Поскольку между ксилемой и флоэмой существует постоянный обмен, часть веществ может передвигаться и по флоэме. Между проводящими элементами ксилемы и флоэмы располагаются живые клетки камбия, и растворенные вещества из сосудов ксилемы частично поступают в клетки камбия. Последние оказываются своего рода регуляторами количества и состава растворенных питательных веществ, передвигающихся по ксилеме. Если какого-либо элемента слишком много в восходящем токе ксилемы, то он аккумулируется клетками камбия. Они же могут служить и источником недостающих элементов питания, передавая их по мере необходимости в ксилемный сок. Передвижение питательных веществ по ксилеме в восходящем направлении - это пассивный процесс, мало связанный с процессами обмена. Понижение температуры и даже умерщвление стебля горячим паром не прекращают передвижения по ксилеме и почти не сказываются на его скорости. Вместе с тел направление и распределение питательных веществ, передвигающихся по сосудам ксилемы, по органам растения, зависит не только интенсивности транспирации, но и напряженности процессов обмена веществ, происходящих в данном органе. Опыты, проведенные с использованием меченого фосфора, показали что чем выше расположен лист, чем он моложе, чем интенсивнее в нем процесс обмена, тем быстрее происходит использование питательных веществ и тем больше его аттрагирующая (притягивающая) способность. Одним из факторов влияющих на распределение питательных веществ, являются фитогормоны. Показано, что удаление верхушки растения вызывает равномерное распределение меченого фосфора по всем листьям независимо от их возраста, что связано с содержанием фитогормонов.

Передвижение минеральных и органических веществ по стеблю

Вода и минеральные вещества, всасываемые корнями, передвигаются по стеблю к листьям, цветкам, и плодам.

Это восходящий ток, он осуществляется по древесине, основным проводящим элементом которой являются сосуды (мертвые пустые трубки, образовавшиеся из живых паренхимных клеток) и трахеиды (мертвые клетки, которые соединяются между собой с помощью окаймленных пор). Только в связи с появлением в процессе эволюции полых мертвых клеток создалось возможность беспрепятственного продвижения Н2О. (Живые клетки представляют сопротивление току Н2О). Длина сосудов достигает несколько метров, а у лиан - несколько десятков метров. Передвижение Н2О в растении происходит в результате действие корневого давления, испарения воды листьями и сил сцепления молекул Н2О.

Органические вещества, образующиеся в листьях в процессе фотосинтеза, оттекают во все органы растения.

Это - нисходящий ток, он осуществляется по лубу коры, основным проводящим элементом которого являются ситовидные трубки (живые клетки, соединяющиеся между собой ситечками - тонкими перегородками с отверстиями, они могут быть в поперечных и продольных стенках). У древесных растений передвижение питательных веществ в горизонтальной плоскости осуществляется с помощью сердцевинных лучей.

Транспорт веществ в растении

Движение веществ по клеткам и тканям. Внутри живых клеток и между отдельными клетками постоянно перемещаются различные вещества. Одни из них поступают в клетку, другие выводятся из нее. Например, вещества, которые образуются в растении, перемещаются внутри клетки, между соседними клетками, от одного органа к другому. Так, продукты фотосинтеза от клеток листа транспортируются к не зеленым частям растения (корню, стеблю, цветкам).

Транспорту веществ способствует строение клеточной оболочки, через которую проходят определенные вещества. Цитоплазма соседних клеток сообщается между собой тончайшими канальцами, которые густо пронизывают клеточную стенку.

Движение минеральных и органических веществ между органами, Для того чтобы понять, каким образом перемещаются вещества между органами растения, вспомните внутреннее строение и функции корня, стебля и листа.

Водный раствор минеральных веществ из почвы поглощают корневые волоски всасывающей зоны корня. Далее через клетки коры корня этот раствор поступает к сосудам центрального цилиндра.

Благодаря корневому давлению, возникающему в клетках корня, почвенный раствор солей по сосудам поступает в надземную часть растения.

Корневое давление можно измерить, присоединив к пню свежесрезанного растения манометрическую трубку (прибор, измеряющий давление). У травянистых растений корневое давление достигает 2-3 атмосфер, у деревянистых – еще больше. По сосудам вода передвигается к листьям, из которых испаряется через устьица. Это направление движения растворов называют восходящим потоком.

На восходящий поток веществ значительно влияет испарение воды листьями, создающее так называемую присасывающую силу листьев. Чем больше воды испаряют листья, тем интенсивнее корневая система поглощает ее из почвы и тем скорее почвенный раствор поступает к надземным частям.

От листьев по стеблю в направлении корневой системы, цветков или плодов транспортируются органические вещества – продукты фотосинтеза. Количество органических веществ, образованных за один световой день в хлоропласте, превышает его массу в несколько раз. Органические вещества по ситовидным трубкам оттекают от листьев к другим частям растения, где они потребляются или откладываются про запас (корень, стебель, плоды). Этот поток называют нисходящим.

Вода и растворенные в ней минеральные и органические вещества могут передвигаться в растении также и в горизонтальном направлении. В корне, например, этот транспорт осуществляется по клеткам коры, а в стебле – по клеткам сердцевинных лучей.

Дальний и ближний транспорт

Различают ближний и дальний транспорт веществ по растению. Ближний транспорт – это передвижение ионов, метаболитов и воды между клетками по симпласту и апопласту. Дальний транспорт – передвижение веществ между органами в растении по проводящим пучкам и включает транспорт воды и ионов по ксилеме (восходящий ток от корней к органам побега) и транспорт метаболитов по флоэме (нисходящий и восходящий потоки от листьев к зонам потребления веществ или отложения их в запас). Загрузка сосудов ксилемы наиболее интенсивно происходит в зоне корневых волосков. В паренхимных клетках проводящего пучка, примыкающих к трахеидам или сосудам, функционируют насосы, выделяющие ионы, которые через поры в стенках сосудов попадают в их полости. В сосудах результате накопления ионов увеличивается сосущая сила, которая притягивает воду. В сосудах развивается гидростатическое давление и происходит подача жидкости в надземные органы. Разгрузка ксилемы, то есть выход воды и ионов через поры сосудов ксилемы в клеточные стенки и в цитоплазму клеток мезофилла листа или клеток обкладки, обусловлена гидростатическим давлением в сосудах, работой насосов в плазмалемме клеток и влиянием транспирации, повышающей сосущую силу клеток листа. Ассимиляты из клеток листьев поступают во флоэму, состоящую из нескольких типов клеток. В ситовидных трубках флоэмы плазмалемма окружает протопласт, содержащий небольшое число митохондрий и пластид, а также агранулярный эндоплазматический ретикулум. Тонопласт разрушен. Зрелая ситовидная трубка лишена ядра. Поперечные клеточные стенки – ситовидные пластинки – имеют перфорации, выстланные плазмалеммой и заполненные полисахаридом каллозой и фибриллами актиноподобного Ф-белка, которые ориентированы продольно. Ситовидные трубки связаны с клетками-спутниками плазмодесмами. Клетки-спутники (сопровождающие клетки) – это небольшие вытянутые вдоль ситовидных клеток паренхимные клетки с крупными ядрами, цитоплазмой, с большим количеством рибосом, других органелл и, особенно, митохондрий. Число плазмодесм в этих клетках в 3-10 раз больше, чем в стенках соседних мезофильных клеток. В клеточных стенках клеток-спутников много инвагинаций, выстланных плазмалеммой, что значительно увеличивает ее поверхность. Самые мелкие проводящие пучки включают один-два ксилемных сосуда и одну ситовидную трубку с сопровождающей клеткой. У многих С4-растений проводящие элементы листа окружены плотно сомкнутыми клетками обкладки, отделяющими пучки от мезофилла и от межклетников. Проводящая система листа представлена проводящими пучками, которые объединены в жилки разных размеров. Жилки расположены по листу так, чтобы обеспечить равномерный сбор ассимилятов по всей площади листа. Транспорт ассимилятов в листе строго ориентирован: ассимиляты передвигаются из каждой микрозоны клеток мезофилла радиусом 70-130 мкм в сторону ближайшего к ней малого пучка и далее по клеткам флоэмы в более крупную жилку. Основной транспортной формой ассимилятов у большинства растений является сахароза (до 85 % от общего сухого вещества). Активность инвертазы – фермента, расщепляющего сахарозу на глюкозу и фруктозу – в проводящих тканях очень низка. Также транспортируются олигосахара, азотистые вещества, органические кислоты, витамины, гормоны. Неорганические соли составляют 1-3 % от общего количества веществ сока, особенно много ионов калия. В клетках мезофилла осмотическое давление ниже, чем в тонких проводящих пучках. По мере продвижения от тонких пучков к средней жилке содержание сахаров возрастает. Поэтому загрузка проводящей системы ассимилятами идет против градиента концентрации с затратой энергии. Источником АТФ служат клетки-спутники. В плазмалемме клеток-спутников функционирует протонная помпа, выводящая наружу протоны. Она активируется ауксином и блокируется абсцизовой кислотой. Закисление апопласта в результате работы этой помпы способствует отдаче ионов калия и сахарозы клетками листа и поступлению их в клетки флоэмных окончаний. Трансмембранный перенос протонов происходит по концентрационному градиенту, а сахарозы – против градиента с помощью белков-переносчиков. Поступившие в клетки протоны вновь выкачиваются протонной помпой, работа которой сопряжена с поглощением ионов калия. Сахароза и ионы калия по плазмодесмам переносятся в полости ситовидных трубок. В 1926 г. Э. Мюнх предложил гипотезу тока ассимилятов по ситовидным элементам флоэмы под давлением. Согласно этой гипотезе между фотосинтезирующими клетками листа, где накапливается сахароза, и тканями, использующими ассимиляты, создается осмотический градиент и возникает ток жидкости во флоэме от донора к акцептору. Предполагается также, что движущей силой перемещения жидкости из одной ситовидной трубки в другую через поры в ситовидной пластинке может быть транспорт ионов калия. Ионы калия активно входят в ситовидную трубку выше ситовидной пластинки, проникают через нее в нижележащую ситовидную трубку и пассивно выходят из нее в апопласт. В результате на ситовидных пластинках возникает электрический потенциал, способствующий транспорту веществ. Кроме того, фибриллы актиноподобного Ф-белка в порах ситовидных пластинок обладают сократительными свойствами и периодическими сокращениями способствуют передвижению жидкости по флоэме. Разгрузка флоэмы происходит из-за высокого гидростатического давления в ситовидных трубках и аттрагирующей (притягивающей) способности органа-акцептора. Его аттрагирующая способность зависит от интенсивности роста органа, в ходе которого используются транспортируемые ассимиляты и тем самым снижается их концентрация в клетке. Следовательно, возникает градиент концентрации между элементом проводящей системы и клеткой акцептора. Интенсивность роста контролируется балансом регуляторов роста. В плазмалемме клеток акцептора функционирует протонная помпа, которая воздействует на ситовидные трубки и клетки-спутники, закисляя апопласт и тем самым способствует отдаче ими ионов калия и сахарозы в клеточные стенки. Затем сахароза поглощается клетками акцептора с участием мембранных переносчиков в симпорте с протонами, а ионы калия – по электрическому градиенту.

Значение транспирации

Количество воды, испаряемой растением, во много раз превосходит объем содержащейся в нем воды. Экономный расход воды составляет одну из важнейших проблем сельскохозяйственной практики. К.А. Тимирязев назвал транспирацию в том объеме, в каком она идет, «необходимым физиологическим злом». Действительно, в обычно протекающих размерах транспирация не является необходимой. Так, если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти со значительно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Вместе с тем транспирация в определенном объеме полезна растительному организму:

1. Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может примерно на 7°С быть ниже температуры листа завядающего, нетранспирирующего. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза 20-25°С). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2. Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом чем интенсивнее транспирация, тем быстрее идет этот процесс.

Как уже говорилось, механизм поступления ионов и воды в клетку различен. Однако некоторое количество питательных веществ может поступать пассивно, и этот процесс может ускоряться с увеличением транспирации.

Транспирация

Транспирация - процесс движения воды через растение и её испарение через наружные органы растения, такие как листья, стебли и цветы. Вода необходима для жизнедеятельности растения, но только небольшая часть воды, поступающей через корни используется непосредственно для нужд роста и метаболизма. Оставшиеся 99-99,5 % теряются через транспирацию. Поверхность листа покрыта порами, называемыми устьицами и у большинства растений большая часть устьиц находится на нижней части листа. Устьица ограничены замыкающими клетками и сопровождающими клетками (вместе известными как устьичный комплекс), которые открывают и закрывают поры. Транспирация проходит через устьичные щели и может рассматриваться как необходимая «цена», связанная с открытием устьиц для доступа углекислого газа, необходимого для фотосинтеза. Транспирация также охлаждает растение, изменяет осмотическое давление в клетках и обеспечивает движение воды и питательных веществ от корней к побегам.

Вода поглощается корнями из почвы с помощью осмоса и движется в ксилеме наверх вместе с растворенными в ней питательными веществами. Движение воды от корней к листьям частично обеспечивается капиллярным эффектом, но в основном происходит за счет разности давлений. В высоких растениях и деревьях, гравитация может быть преодолена только за счет уменьшения гидростатического давления в верхних частях растения из-за диффузии воды через устьица в атмосферу.

Охлаждение достигается путём испарения с поверхности растения воды, у которой высокая удельная теплота парообразования.

Регуляция[править | править вики-текст]

Растение регулирует свой уровень транспирации с помощью изменения размера устьичных щелей. На уровень транспирации также влияет состояние атмосферы вокруг листа, влажность, температура и солнечный свет, а также состояние почвы и её температура и влажность. Кроме того, надо учитывать и размер растения, от которого зависит количество воды, поглощаемой корнями и, в дальнейшем, испаряемой через листья.

Важным свойством роста является ритмичность. Существуют ритмы, следующие за изменениями внеш. условий - длины дня, темп-ры воздуха, влажности почвы и т.д. (экзогенные), и контролируемые внутр. факторами (эндогенные). Отсутствие видимого роста наз. покоем р-ний, во время к-рого сохраняется скрытая меристематич. активность и идут процессы морфогенеза. Так, у яблонь после прекращения роста побегов осенью продолжается рост зачатков цветков в генеративных почках. Покой - проявление сезонной ритмичности роста р-ний. Особенностью роста (а также развития) является полярность, т. н. ориентация в пространстве клеточных структур и происходящих в них процессов. Это выражается в различии морфогенеза на противоположных концах органов и всего р-ния (напр., черенок образует корни на полярно нижнем конце, а почки распускаются на верхнем). Для осуществления ростовых процессов зоны роста должны непрерывно снабжаться питат. в-вами и фитогормонами.

ФИТОГОРМОНЫ (от греч. phyton - растение и гормоны) , гормоны растений, физиологически активные органич. соединения, действующие в ничтожно малых кол-вах как регуляторы роста и развития. Образуются гл. обр. в зонах интенсивного роста, иногда и в тканях, закончивших рост. Синтезируясь в одних органах или зонах р-ния, Ф. оказывают влияние на другие, обеспечивая тем самым функциональную целостность растит, организма. Известно 5 типов Ф., для к-рых установлены хим. строение и в осн. чертах механизм регуляторного действия: ауксины, гиббереллины, цитокинины (стимуляторы), а также абсцизовая к-та и этилен (ингибиторы). Предполагается существование у высших р-ний и др. Ф., напр. антезинов, ответственных за заложение цветков. Разные Ф., с одной стороны, оказывают одноврем. и разл. действие на все процессы роста и развития р-ний, а с другой - взаимодействуют один с другим. Так, ауксин индуцирует синтез этилена и способствует синтезу цитокининов, а действие гиббереллина сопровождается увеличением содержания ауксина. Поэтому для р-ний важно не содержание какого-либо одного Ф., а соотношение между ними (гормональный баланс). Изменение соотношения Ф. обусловливает переход из одного возрастного состояния в другое. Для нужд с. х-ва производятся гиббереллины, аналоги ауксинов и цитокининов и продуценты этилена. Области применения Ф. и их аналогов: размножение ценных сортов с помощью культуры тканей (ауксины, цитокинины); укоренение черенков (ауксины); стимуляция предуборочного опадения плодов, дефолиантное и гербицидное действие (аналоги ауксинов и продуценты этилена); повышение урожайности томата и бессемянных сортов винограда, выхода льноволокна; стимуляция прорастания семян, луковиц и клубней.

Вопрос 18-19

Движения растений. Тропизмы и настии

Растительный организм обладает способностью к определенной ориентировке своих органов в пространстве. Реагируя на внешние воздействия, растения меняют ориентировку органов. Различают движения отдельных органов растения, связанные с ростом - ростовые и с изменениями в тургорном напряжении отдельных клеток и тканей - тургорные. Ростовые движения, в свою очередь, бывают двух типов: тропические движения, или тропизмы,- движения, вызванные односторонним воздействием какого-либо фактора внешней среды (света, силы земного притяжения и др.); настические движения, или настии,- движения, вызванные общим диффузным изменением какого-либо фактора (света, температуры и др.). В зависимости от фактора, вызывающего тропические движения, различают геотропизм, фототропизм, хемотропизм, тигмотропизм, гидротропизм. Геотропизм - движения, вызванные односторонним влиянием силы тяжести. Если положить проросток горизонтально, то через определенный промежуток времени корень изгибается вниз, а стебель - вверх. Еще в начале ХIХ в. был изобретен прибор клиностат. В этом приборе проросток в горизонтальном положении привязывается к вращающейся оси. Благодаря этому сила притяжения действует попеременно на нижнюю и верхнюю стороны проростка. В этом случае рост проростка идет строго горизонтально и никаких изгибов не наблюдается. Эти опыты доказали, что изгибы стебля и корня связаны с односторонним действием силы земного притяжения. Изгиб корня вниз (по направлению действия силы притяжения) называют положительным геотропизмом.

Тропизмы и настии: 1 - геотропизм; 2 - фототропизм; 3 - термонастии; 4 - фотонастии.

Геотропическая реакция - «пороговое» явление, т. е. геотропический изгиб происходит лишь при достижении раздражителем какого-то определенного уровня. Количество раздражителя равно силе гравитации, умноженной на время. Для того чтобы произошел изгиб, проросток должен быть выдержан в горизонтальном положении определенное время (время презентации). Если проростки выдержать это время в горизонтальном положении, а затем поместить вертикально, то все равно изгиб произойдет. При строго горизонтальном положении проростка время презентации наименьшее. Чем ближе положение проростка к вертикальному, тем больше время презентации. Это понятно, так как сила земного притяжения наибольшая при горизонтальном положении. Время презентации составляет примерно 3-5 мин. Время, необходимое для проявления изгиба, - 45-60 мин. Направление геотропической реакции может изменяться в процессе роста организма, а также в зависимости от условий среды. Так, для цветоножки мака до распускания бутона характерен положительный геотропизм, а после распускания цветков - отрицательный. При пониженной температуре отрицательный геотропизм стебля может переходить в диагеотропизм (стелющиеся формы).

Фототропизм - движения, вызванные неравномерным освещением разных сторон органа. Если свет падает с одной стороны, стебель изгибается по направ­лению к свету - положительный фототропизм. Корни обычно изгибаются в на­правлении от света - отрицательный фототропизм. Ориентировку пластинок листьев перпендикулярно к падающему свету (при большой интенсивности света) называют диафототропизмом. Для восприятия одностороннего освещения также необходимо определенное время презентации, которое зависит от силы одностороннего освещения. В зависимости от возраста растения и от условий среды направление фототропических изгибов может меняться. Так, у настурции до цветения для стебля характерен положительный фототропизм, а после созревания семян - отрицательный.

Хемотропизм - это изгибы, связанные с односторонним воздействием хи­мических веществ. Хемотропические изгибы характерны для пыльцевых трубок и для корней растений. Если пыльцу положить на предметное стекло в среду, содержащую сахарозу, и одновременно поместить туда кусочек завязи, все пыль­цевые трубки в процессе роста изогнутся по направлению к завязи. Корни растений изгибаются по направлению к питательным веществам. Если питательные вещества не перемешаны со всей почвой, а распределяются отдельными очагами, корни растут по направлению к этим очагам. Такая способность корней определяет большую эффективность гранулированных удобрений. Корни растут по направлению к отдельным гранулам, содержащим питательные вещества. При таком способе внесения питательных веществ создается также повышенная концентрация их около корня, что обусловливает их лучшую усвояемость.

Гидротропизм - это изгибы, происходящие при неравномерном распределении воды. Для корневых систем характерен положительный гидротропизм.

Аэротропизм - ориентировка в пространстве, связанная с неравномерным распределением кислорода. Аэротропизм свойствен в основном корневым системам.

Тигмотропизм - реакция растений на одностороннее механическое воздей­ствие. Тигмотропизм свойствен лазающим и вьющимся растениям.

Настические движения бывают двух типов: эпинастии - изгиб вниз и гипонастии - изгиб вверх. В зависимости от фактора, вызывающего те или иные настические движения, различают термонастии, фотонастии, никтинастии и др.

Термонастии - движения, вызванные сменой температуры. Ряд растений (тюльпаны, крокусы) открывают и закрывают цветки в зависимости от темпе­ратуры. При повышении температуры цветки раскрываются (эпинастические движения), при снижении температуры закрываются (гипонастические движения).

Фотонастии - движения, вызванные сменой света и темноты. Цветки одних растений (соцветия одуванчика) закрываются при наступлении темноты и от­крываются на свету. Цветки других растений (табака) открываются с наступлением темноты.

Никтинастии («никти» - ночь) - движения цветков и листьев растений, свя­занные с комбинированным изменением, как света, так и температуры. Такое комбинированное воздействие наступает при смене дня ночью. Примером являются движения листьев у некоторых бобовых, а также у кислицы. К ростовым движениям относятся и круговые движения концов молодых побегов и кончиков корней относительно оси. Такие движения называют круговые нутации. Примерами являются движения стеблей вьющихся растений (хмель), усиков лазящих растений. Это необходимо для поиска опоры при движении к свету стеблей.

Тургорные движения. Не все настические движения относятся к ростовым. Некоторые связаны с изменением тургора. К ним относятся никтинастические движения листьев. Так, для листьев многих растений характерны ритмические движения - у клевера наблюдается поднятие и складывание листочков сложного листа ночью. Этот тип движений связан с изменением тургора в специали­зированных клетках листовых подушечек.

Сейсмонастии - движения, вызванные толчком или прикосновением, например движение листьев у венериной мухоловки или у стыдливой мимозы. В результате прикосновения листья мимозы опускаются, а листочки складываются. Реакция происходит чрезвычайно быстро, спустя всего 0,1 с. При этом раздражение распространяется со скоростью 40-50 см/с. Сейсмонастические движения листьев мимозы могут происходить и под влиянием местных тепловых, электрических или химических воздействий. Эти движения связаны с потерей тургора нижней стороны листа. Значение подобной двигательной реакции заключается в предотвращении повреждений от ливневых дождей и сильных ветров.

Автонастии - самопроизвольные ритмические движения листьев, не связанные с какими-либо изменениями внешних условий. Так, листья тропического растения десмидиум претерпевают ритмические колебания.

Фотопериодизм

[править | править вики-текст]

Материал из Википедии - свободной энциклопедии

Перейти к: навигация, поиск

Фотопериодизм (греч. photos- "свет" и periodos- "круговорот", "чередование") - реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток (фотопериодами).

Термин «фотопериодизм» (англ. photoperiodism) предложили в 1920 году американские учёные селекционеры У. Гарнер и Г. Аллард, которые открыли данную реакцию у растений. Оказалось, что многие растения очень чувствительны к изменению длины дня.

Фотопериодизм у растений

Под действием реакции фотопериодизма растения переходят от вегетативного роста к зацветанию. Эта особенность является проявлением адаптации растений к условиям существования, и позволяет им переходить к цветению и плодоношению в наиболее благоприятное время года. Помимо реакции на свет, известна также реакция на температурные воздействия - яровизация растений.


Поскольку все три основные группы органических веществ тесно связаны в метаболизме, можно выделить два основных ключевых момента в их взаимопревращении. Это прежде всего образование пировиноградной кислоты и уксусной кислоты . Именно эти два вещества являются теми краеугольными камнями, на которых основываются круговороты углеводов, жиров и белков.

От пировиноградной кислоты отходят пути образования глюкозы, а, следовательно и глюкозо-1-фосфата, как основы образования углеводов, и образование органических кислот (кетокислот), которые начинают путь синтеза аминокислот.

Уксусная кислота , образовываясь в русле синтеза органических кислот от пировиноградной кислоты, является началом пути образования жиров, а в русле расщепления жирных кислот в результате -окисления, является связкой между метаболизмом жиров и углеводов.

Образование нуклеиновых кислот, различных вторичных органических соединений основывается на веществах, синтезирующихся на промежуточных этапах синтеза этих трех групп веществ.

Передвижение органических веществ в растении

В растении лист является основным органом биосинтеза. Продукты фотосинтеза запасаются в виде крахмала в хлоропластах и лейкопластах, перераспределение углеводов происходит при переходе крахмала в растворимые простые сахара.

В растении ксилема служит для перемещения воды и минеральных веществ из почвы в надземную часть, а флоэма служит для доставки сахарозы из листьев в другие органы растения.

По флоэме отток веществ наблюдается от донора (органа-синтезатора) вверх и вниз - к любому органу-акцептору, где эти вещества запасаются или потребляются. Органы, акцептирующие вещества, относятся, как правило, к запасающим органам (корнеплоды, корневища, клубни, луковицы).

По ксилеме же вещества движутся только снизу вверх.

Все потребляющие органы обеспечиваются, как правило, ближайшим к ним донором. Верхние фотосинтезирующие литься снабжают растущие почки и самые молодые листья. Нижние листья обеспечивают корни. Плоды обеспечиваются из ближайших к ним листьев.

Транспорт по флоэме может происходить одновременно в двух направлениях . Эта "двухнаправленность " является результатом одностороннего тока в отдельных, но смежных ситовидных трубках, соединенных с различными донорами и акцепторами.

Ситовидные трубки - это тонкостенные удлиненные клетки, соединенные своими концами и образующие непрерывную трубку. В местах соприкосновения клеточные стенки пронизаны ситовидными порами и называются поэтому ситовидными пластинками. В отличие от ксилемных клеток ситовидные флоэмные клетки - живые , хотя и непохожи на обычные живые клетки. Они не имеют ядра, но содержат некоторые другие органеллы и плазмалемму, которая играет важную роль в удержании сахаров в ситовидных трубках. Доказательством может служить способность флоэмных клеток к плазмолизу. Ситовидные трубки имеют короткий период жизни и постоянно заменяются новыми, образующимися при делении камбия.

Перемещение веществ по флоэме происходит с большой скоростью: до 100 см/час. Транспорт по флоэме осуществляется путем перетекания растворов. Высокое гидростатическое давление, обусловленное движением воды в богатые сахаром зоны с высоким отрицательным водным потенциалом, вызывает перетекание растворов в зоны с более низким давлением. Удаление сахара из них гарантирует постоянное наличие градиента и, следовательно, перетекание раствора. Загрузка растворенных веществ включает совместный транспорт (котранспорт) сахарозы и ионов водорода с участием специфической пермеазы. Этот процесс обусловлен градиентом кислотности и электрохимическим градиентом. Поглощенные ионы водорода выделяются впоследствии с помощью протонного транспортера, использующего энергию АТФ.

Кроме сахарозы во флоэмном потоке транспортируются аминокислоты и амиды (аспарагин, глютамин), при старении добавляются также органические и минеральные вещества из отмирающих органов.

В направленном транспорте ассимилятов в растении участвуют в основном три системы:

выталкивающая или нагнетающая (лист),

проводящая (флоэма),

аттрагирующая или притягивающая (меристематические и запасающие ткани).

Таким образом передвижение веществ в растении включает сложный комплекс процессов передвижения пасоки по ксилеме и флоэме, который регулируется растением и зависит как от внешних факторов, так и от фазы развития растения.

Растения, имеющие корни и побеги, поглощают корнями из почвы воду и минеральные вещества, а в их зеленых надземных частях синтезируется органическое вещество из неорганических. Однако вода и минеральные вещества нужны не только корню, а органические вещества - не только листьям. Поэтому в растениях вещества должны перераспределяться, то есть перемещаться из одного органа в другой. А для этого нужна специальная проводящая система .

У растений ток воды и минеральных веществ идет снизу вверх, а ток органических веществ во всех направлениях. Эти два тока разделены, то есть идут по разным частям проводящей системы.

Ток воды с минеральными веществами осуществляется по так называемым сосудам . Это мертвые клетки, в местах соприкосновения они не имеют перегородок. За счет давления вода в них поднимается вверх и доставляется в фотосинтезирующие и иные органы растения. Сосуды тянутся от корней, через стебель, заходят в каждый лист и другой орган растения.

Синтезированные в листьях органические вещества доставляются в другие органы растения по так называемым ситовидным трубкам . В отличие от сосудов ситовидные трубки составляют живые вытянутые клетки. Места их соединения между собой пронизаны многочисленными порами, так что органические вещества могут передвигаться из клетки в клетку.

У древесных растений в стебле ситовидные трубки располагаются в коре . В то время как сосуды находятся в древесине , т. е. глубже.

Больше всего органических веществ идет к тем частям растений, которые активно растут и развиваются. Это и понятно, ведь для деления клеток и особенно их роста нужны питательные вещества.

Органические вещества доставляются в разные части растения (плоды, корни, цветки, семена, стебли) не только для их питания. Часто органические вещества запасаются (в клубнях, корневищах, семенах и др.).

По стеблю растений от корней поднимается вода с растворенными в ней минеральными веществами, а от фотосинтезирующих частей отходят органические вещества, которые по стеблю передвигаются во все остальные части растений.

Оба тока веществ разделены. Вода обычно поднимается по сосудам древесины, а органические вещества передвигаются по ситовидным трубкам .

Ситовидные трубки входят в состав коры древесных растений и представляют собой живые клетки, вверху и внизу контактирующие между собой посредством множества пор. Отсюда их название «ситовидные» (от слова «сито»).

В отличие от них сосуды древесины - клетки мертвые, не имеющие перегородок между собой (в вертикальном направлении). Вода поднимается по ним за счет корневого давления и процесса испарения.

Камбий находится между корой и древесиной. Это образовательная ткань, благодаря которой стебель утолщается.

Эпидермис - один из видов покровных тканей растений. Он образует состоящую из живых клеток кожицу, которая есть только у листьев и зеленых стеблей.

Передвижение веществ в растениях

а) ксилеме;

б) флоэме;

в) ксилеме и флоэме;

г) не передвигаются, а запасаются в листе.

6. Клетки камбия расположены между :

а) древесиной и сердцевиной;

б) лубом и сердцевиной;

в) лубом и древесиной;

г) кожицей и пробкой.

Какая наука занимается изучением растений?

а) зоология;

б) природоведение;

в) ботаника;

г) анатомия;

8. Эндосперм образуется в результате :

а) слияния одного из спермиев с яйцеклеткой;

б) слияния одного из спермиев с центральной клеткой;

в) опыления;

г) разрастания стенок завязи.

9. Живые организмы:

а) могут двигаться

б) способны к самостоятельному существованию

в) могут увеличиваться в размерах

г) состоят из молекул

Без каких двух процессов невозможен обмен веществ?

а) рост и развитие

б) питание и выделение

в) дыхание и рост

г) раздражимость и подвижность

Часть II.

В течение всей жизни растут: 1) человек; 2) кит; 3) ель; 4) опенок; 5) бактерия кишечная палочка; 6)одуванчик

а) только 1, 2, 4;

б) только 3, 4, 6;

в) только 1, 4, 5;

г) только 2, 3, 4;

д) 1, 2, 3, 4, 5,6.

2. К растительным тканям, в образовании которых участвуют только живые

клетки, относятся: 1) основные; 2) покровные; 3) запасающие;

4) механические; 5) образовательные.

а) только 1, 2, 4;

б) только 1, 3, 5;

в) только 1, 4, 5;

г) только 2, 3, 4;

д) 1, 2, 3, 4, 5.

Признаками листьев растений засушливых мест являются: 1) листья крупные, 2) небольшой размер листьев, 3) густое опушение листовой пластинки, 4) большое количество устьиц, 5) восковой налет на внешней стороне листа, 6) небольшое количество устьиц

а) только 1,3, 4;

б) только 1, 4, 5;

в) только2, 3, 5, 6;

г) только 2, 3, 4, 5;

д) 1, 2, 3, 4, 5, 6.

Цветок – это: 1) часть побега, 2) видоизмененный побег, 3) видоизмененный лист, 4) яркий венчик, 5) генеративный орган растения

а) только 2, 5;

б) только 1, 2, 5;

в) только 1, 4, 5;

г) только 2, 3, 4, 5;

д) 1, 2, 3, 4, 5.

Определите последовательность участков на спиле дерева, начиная от поверхности: 1) сердцевина, 2) камбий, 3)кора, 4) древесина, 5)кожица, 6) луб.

а) 3, 5, 4, 2, 6, 1;

б) 5, 2,3, 4, 6 ,1;

в) 1, 2, 3,5, 4, 6;

г) 2, 5, 3, 4, 5, 6,1;

д) 5, 3, 6, 2, 4, 1.

Часть III. Вам предлагаются тестовые задания в виде суждений, с каждым из

которых следует либо согласиться, либо отклонить. В матрице ответов укажите вариант

ответа «да» или «нет». Максимальное количество баллов, которое можно набрать – 5 (по 1

баллу за каждое тестовое задание)

1. Увеличительное стекло лупы двояковыпуклое.
2. Двудомные растения встречаются редко несмотря на преимущества перекрестного опыления

3. В процессе дыхания у растений поглощается углекислый газ

4. Вакуоли растительной клетки заполнены воздухом.
5. При делении клеток митозом каждая из двух молодых клеток получает столько же хромосом, сколько имелось в делящейся материнской клетке.

Часть IV. Вам предлагаются тестовые задания, требующие установления

соответствия. Максимальное количество баллов, которое можно набрать – 2.5. Заполните

матрицы ответов в соответствии с требованиями заданий.

Задание 1. [мах. 2,5 балла] Выберите из перечисленных терминов те, которые относим «к женской» части цветка и «к мужской» части цветка

ключи 6класс

Класс

Часть I. Вам предлагаются тестовые задания, требующие выбора только одного

ответа из четырех возможных. Максимальное количество баллов, которое можно набрать

– 15 (по 1 баллу за каждое тестовое задание). Индекс ответа, который вы считаете

наиболее полным и правильным, укажите в матрице ответов.

1) имеют корень, стебель, листья;

2) имеют цветок и плод;

3) размножаются семенами;

4) размножаются вегетативным путем.

2. Хроматофорами называются пластиды:

1) грибов;

3) водорослей;

4) бактерий.

3. Бактерии являются возбудителями:

1) энцефалита;

3) коревой краснухи;

4) гепатита.

4. По сосудам древесины передвигаются:

2) органические вещества;

3) растворы сахаров;

4) вода и растворенные минеральные соли.

5. Готовыми органическими веществами питаются:

2) папоротники;

3) водоросли;

6. В какую систематическую группу объединяются сходные роды животных?

1) в отряд;

2) в семейство;

3) в класс;

4) в породу.

7. Где у гидры происходит переваривание пищи?

1) во рту и кишечной полости;

2) в клетках и межслойном пространстве;

3)только в кишечной полости;

4) в кишечной полости и в клетках.

8. Что такое регенерация?

1) восстановление утраченных частей тела;

2) бесполый способ размножения животных;

3) половой способ размножения животных;

4) защита от нападения.

1) плодовые культуры;

2) зерновые культуры;

3) ягодные культуры;

4) картофель.

10. У сосны на каждой чешуйке женской шишки находится:

1) 1 семязачаток;

2) 2 семязачатка;

3) 3 семязачатка;

4) 4 семязачатка.

11. Бактерии размножаются:

1) спорами;

2) делением клетки;

3) почкованием;

4) с помощью гамет.

12. Мицелий какого гриба не имеет клеточных перегородок:

1) мукора;

2) пеницилла;

3) головни;

4) трутовика.

13. Для чего служат цисты одноклеточных?

1)для размножения и расселения;

2) для выживания и расселения;

3) для размножения и выживания;

4) для размножения, расселения и выживания.

14. Как размножаются членистоногие?

1) большинство раздельнополые;

2) ракообразные гермафродиты, остальные раздельнополые;

3) паукообразные гермафродиты, остальные раздельнополые;

4) насекомые гермафродиты, остальные раздельнополые.

15. Раздражимостью называют:

1) действие раздражителя;

2) ответ на раздражение;

3) свойство клеток и целого организма отвечать на воздействие среды изменением своей деятельности;

4) свойство клеток используемое для захвата добычи хищниками.

Часть II. Вам предлагаются тестовые задания с одним вариантом ответа из четырех

возможных, но требующих предварительного множественного выбора. Максимальное

количество баллов, которое можно набрать – 10 (по 2 балла за каждое тестовое задание).

Индекс ответа, который вы считаете наиболее полным и правильным, укажите в матрице

1. Для питания животные организмы:

I. используют готовые органические вещества;

II. образуют органические вещества на свету;

III. используют продукты окисления органических веществ;

IV. поглощают воду из окружающей среды;

V. окисляют органические и минеральные вещества.

2. Для хрящевых рыб характерны признаки:

I. жаберные крышки отсутствуют;

II. скелет состоит из хрящей и костей;

III. имеется плавательный пузырь;

IV. узлы брюшной цепочки;

V. рот на нижней стороне головы.

3. К плацентарным животным относят:

I. сумчатых;

II. первозверей;

III. грызунов;

IV. хордовых;

V. приматов.

Ответ оставил Гость

По каким клеткам происходит передвижение органических веществ?

Транспорт веществ в живых организмах.
1. Передвижение воды и минеральных веществ в растении. Поглощение воды и минеральных веществ корневыми волосками, расположенными в зоне всасывания корня. Передвижение воды и минеральных веществ по сосудам - проводящей ткани корня, стебля, листа. Сосуды - длинные полые трубки, образованные одним рядом клеток, между которыми растворились поперечные перегородки.

2. Корневое давление - сила, благодаря которой вода и минеральные вещества передвигаются по стеблю в листья. Роль корневого давления в перемещении воды и минеральных веществ из сосудов корня в жилки, а затем в клетки листа. Жилки - сосудисто-волокнистые пучки листа. Испарение воды листьями за счет непрерывного движения воды из корней вверх к листьям. Устьица - щели, ограниченные двумя замыкающими клетками, их роль в испарении воды: периодическое открывание и закрывание в зависимости от условий среды.

3. Сосущая сила, возникающая в результате испарения воды, и корневое давление - причины передвижения минеральных веществ в растении. Путь воды из корня в листья - восходящий ток. Короткий восходящий ток у травянистых растений, длинный - у деревьев. Передвижение воды и минеральных веществ у ели на высоту до 30 м, у эвкалипта - до 100 м. Опыт со срезанной веткой, помещенной в подкрашенную чернилами воду, - доказательство передвижения воды по сосудам древесины.

4. Передвижение органических веществ в растении. Образование органических веществ в клетках растений с хлоропластами в процессе фотосинтеза. Их использование всеми органами в процессе жизнедеятельности: рост, дыхание, движение. Передвижение органических веществ по ситовидным трубкам - живым тонкостенным удлиненным клеткам, соединенным узкими концами, пронизанными порами. Кора дерева, наличие в ней луба с лубяными волокнами и ситовидными трубками. Передвижение органических веществ из листьев во все органы - нисходящий ток. Опыт с окольцованной веткой, помещенной в сосуд с водой, - доказательство передвижения органических веществ по ситовидным трубкам луба.

Органические вещества могут накапливаться в растворённом (в корнеплодах свеклы, чешуйках лука), твёрдом (зёрна крахмала, белка – клубни картофеля, зёрна злаков, бобовых) или полужидком состоянии (капли масла в эндосперме клещевины). Особенно много органических веществ откладывается в видоизменённых подземных побегах (корневищах, клубнях, луковицах), а также в семенах и плодах. В стебле органические вещества могут откладываться в паренхимных клетках первичной коры, сердцевинных лучах, живых клетках сердцевины.

Что наблюдаем:

Результат:

Вывод:

Размноже́ние расте́ний

Осот с корневыми отпрысками

Размножение земляники усами

Размножение растений листьями. В природе размножение растений листьями происходит реже, чем побегами и корнями. Листьями размножается сердечник луговой, произрастающий по берегам рек на влажной почве (рис. 143).

Передвижение по стеблю органических веществ

Летом его листочки отделяются от общего черешка. Из клеток основания листочков развиваются придаточные почки. После укоренения во влажной почве из почек развиваются молодые растения.

Сердечник луговой

Бесполое размножение

Половое размножение

ПОСМОТРЕТЬ ЕЩЕ:

Передвижение по стеблю органических веществ

Органические вещества откладываются в специальных запасающих тканях, из которых одни накапливают эти вещества внутри клеток, другие – внутри клеток и в их оболочках. Вещества, которые откладываются в запас: сахара, крахмал, инулин, аминокислоты, белки, масла.

Органические вещества могут накапливаться в растворённом (в корнеплодах свеклы, чешуйках лука), твёрдом (зёрна крахмала, белка – клубни картофеля, зёрна злаков, бобовых) или полужидком состоянии (капли масла в эндосперме клещевины). Особенно много органических веществ откладывается в видоизменённых подземных побегах (корневищах, клубнях, луковицах), а также в семенах и плодах.

В стебле органические вещества могут откладываться в паренхимных клетках первичной коры, сердцевинных лучах, живых клетках сердцевины.

Мы знаем, что крахмал, образовавшийся в листьях, превращается затем в сахар и поступает во все органы растения.

Цель: выяснить, как сахар из листьев проникает в стебель?

Что делаем: на стебле комнатного растения (драцены, фикуса) осторожно сделаем кольцевой надрез. Удалим с поверхности стебля кольцо коры и обнажим древесину. На стебле укрепим стеклянный цилиндр с водой (смотри рисунок).

Что наблюдаем: через несколько недель на ветке, выше кольца появляется утолщение в виде наплыва. На нём начинают развиваться придаточные корни.

Результат: мы знаем, что в лубе расположены ситовидные трубки, а так как, окольцевав ветку мы их перерезали, то органические вещества, оттекающие из листьев, дошли до кольцевой вырезки и скопились там.

Вскоре из наплыва начинают развиваться придаточные корни.

Вывод: таким образом, опыт доказывает, что органические вещества передвигаются по лубу.

11. Видоизмененные побеги, их строение, биологическое и хозяйственное значение.

Видоизмененные побеги выполняют различные функции. Так, в побеге некоторых растений откладываются запасные питательные вещества (содержащие крахмал, сахара, минеральные вещества, фитонциды (вещества, убивающие микробы). Они широко используются в пищу человеком и используются на корм животным. Видоизмненные побеги также могут служить для вегетативного размножения, происходящего в природе без вмешательства человека.

12. Способы размножения растений.

Размноже́ние расте́ний - совокупность процессов, приводящих к увеличению числа особей некоторого вида; у растений имеет место бесполое, половое и вегетативное (бесполое и половое размножение объединяют в понятие генеративное размножение).

Бесполое размножение отличается от вегетативного тем, что при вегетативном размножении дочерняя особь, генетически идентичная материнской (клон), обязательно получает фрагмент материнского организма, так как образуется из него; при бесполом размножении же этого не происходит.

Вегетативное размножение происходит при помощи вегетативных органов - корней, надземных или подземных побегов, реже листьев.

Генеративное размножение связано с образованием в цветках особых мужских и женских специализированных клеток: спор (греч. «спора» - семя) и гамет (греч. «гаметес» - супруг).

Размножение растений с помощью спор называют споровым (бесполым) размножением. Размножение с помощью гамет (половых клеток) - половым размножением.

Размножение корневыми отпрысками. Как вам известно, у некоторых растений на корнях образуются придаточные почки. Из них развиваются надземные побеги, от оснований которых отрастают придаточные корни. Эти побеги называют корневыми отпрысками (рис. 139). После отмирания материнского корня дочерние растения становятся самостоятельными. При помощи корневых отпрысков размножаются и быстро занимают новые территории малина, осина, иван чай, щавель малый. Особенно много корневых отпрысков образуют трудноискоренимые сорные растения - бодяк, осот, вьюнок. Они могут возникать даже на отрезках корней длиной 0,5 см.

Осот с корневыми отпрысками

Размножение надземными побегами. Многие растения (луговой чай, клевер ползучий, вероника лекарственная) размножаются ползучими побегами. На узлах побегов образуются придаточные корни, а из боковых почек развиваются боковые побеги. После отмирания участков материнского побега молодые растения становятся самостоятельными.

Ветка ивы, укоренившаяся во влажной почве

На верхушке видоизмененных надземных побегов, или столонов, у земляники лесной, живучки ползучей, гусиной лапки формируются укороченные побеги. После образования корней они быстро растут и становятся самостоятельными дочерними растениями. От них отрастают новые столоны.

Размножение земляники усами

Размножение растений подземными видоизмененными побегами. Многие растения увеличивают свою численность путем размножения корневищами, луковицами и клубнями. При помощи корневищ размножаются черника, кислица, ландыш майский, пырей ползучий и многие другие растения. Корневища растений ветвятся. Из верхушечных и боковых почек развиваются молодые растения. При отмирании и разрушении старых участков корневищ они обособляются в отдельные растения.

Черника с подземными корневищами

При помощи луковиц размножаются лилии, лук, чеснок, тюльпаны. Луковицы у этих растений образуют луковички детки, которые после зимовки дают начало новым растениям.

Клубнями в природе размножаются хохлатки, седмичник и др. растения.

Размножение растений листьями. В природе размножение растений листьями происходит реже, чем побегами и корнями.

Листьями размножается сердечник луговой, произрастающий по берегам рек на влажной почве (рис. 143). Летом его листочки отделяются от общего черешка. Из клеток основания листочков развиваются придаточные почки. После укоренения во влажной почве из почек развиваются молодые растения.

Сердечник луговой

Размножение листьями можно наблюдать у комнатного растения бриофиллюма. У него по краям листовых пластинок закладываются многочисленные почки. Находясь на листьях материнского растения, они дают начало небольшим побегам, образующим корни. Опадая, такие побеги укореняются в почве и дают начало взрослым растениям.

Лист бриофиллюма с придаточными почками

Значение вегетативного размножения в жизни растений. Благодаря вегетативному размножению растения увеличивают свою численность и расширяют занимаемые территории. На первых порах жизни дочерние особи получают питательные вещества от материнского растения. Поэтому они быстро развиваются, хорошо переносят неблагоприятные условия внешней среды, рано переходят к цветению и плодоношению.

В жизни некоторых растений вегетативное размножение имеет особое значение. Например, многие водные растения (ряска, рдесты, элодея) размножаются главным образом вегетативно.

Цветет ряска очень редко. Зато вегетативное размножение происходит очень быстро. Не успев отделиться от материнского растения, новые дочерние дольки приступают к размножению.

Нередко семена не могут образоваться из-за влияния неблагоприятных условий на цветение, сильного затенения, отсутствия насекомых опылителей, а уже образовавшиеся семена не могут прорасти через плотный дерновой покров. В связи с этим большинство лесных и болотных растений (черника, брусника, багульник, многие осоки и злаки) размножаются, в основном, вегетативным путем.

Бесполое размножение - это размножение, происходящее без участия половых клеток; при этом в размножении участвует лишь одна особь.

Такое размножение свойственно водорослям, мхам, папоротникам, хвощам и плаунам. Споры - это особые мелкие клетки. Они содержат ядро, цитоплазму, покрыты плотной оболочкой и способны на протяжении длительного времени переносить неблагоприятные условия. Попав в благоприятные условия среды, споры прорастают и образуют новые (дочерние) растения.

При бесполом размножении образующиеся дочерние организмы по своим свойствам одинаковы с материнским растением. В этом проявляется биологическое значение бесполого размножения.

Половое размножение - это размножение, при котором происходит слияние женских (♀) и мужских (♂) половых клеток, от чего появляются дочерние организмы, качественно иные, чем родительские; при этом в размножении участвуют два родительских организма.

Процесс слияния мужской и женской половых клеток называется оплодотворением.

Половые клетки, называемые гаметами (от греч. гаметос — "супруг"), развиваются у двух родительских организмов. Женские гаметы называются яйцеклетками. Мужскими гаметами являются неподвижные спермии (у семенных растений) или подвижные, со жгутиком - сперматозоиды (у споровых растений). В процессе оплодотворения при слиянии женских и мужских половых клеток возникает особая клетка - зигота (от греч. зиготос — "двуупряжный"). Она содержит наследственные свойства обоих родительских организмов. Из зиготы развивается новый (дочерний) организм с особыми свойствами, качественно новыми, отличными от родительских (см. схему).

У организма, полученного в результате оплодотворения, всегда возникает что-то новое, еще не встречавшееся в природе, хотя и очень похожее на его родителей. Этого не происходит при бесполом размножении, когда дочерние организмы развиваются без оплодотворения и только от одного родителя. Величайшее значение полового размножения заключается в обновлении свойств организмов. Такие организмы с новыми наследственными свойствами, полученными от обоих родителей, имеют больше шансов на выживание.

Важнейшее значение полового размножения в том, что организмы, возникшие половым путем, обладают новыми (в сравнении с родительскими) наследственными свойствами.

У одноклеточных растений место образования и место использования того или иного вещества настолько близко друг к другу, что передвижения веществ не является здесь проблемой.

Иное дело многоклеточные растения. По мере их эволюции фотосинтетический аппарат специализировался и перемещался в воздушные органы листья. расстояния которые приходилось проходить веществам внутри растения все увеличивалось. Организованное передвижение продуктов фотосинтеза стало в этих условиях физиологической потребностью. Инициатива в транспорте ассимилянтов принадлежит в первую очередь эмбриональным тканям.

По расстоянию, проходящему органическими веществами внутри растения, выделяют два вида передвижения транспорта: ближний и дальний. По * передвижения эти виды подразделяют в свою очередь: ближний транспорт – на симпластный и аллопластный; дальний транспорт – на флоэмный и ксилемный.

Флоэмный транспорт – начальный синтез органических происходит в хлоропластах. Вслед за синтезом начинается непрерывный отток продуктов фотосинтеза из листьев. Передвижения ассимилянтов начинаются в хлоропластах, переходит затем в цитоплазму, продолжается в специализированных поводящих тканях растения (флоэме) и заканчивается в потребляющих тканях, где они расходуются растущими тканями или отлагаются в запас. Таким образом, в общей цепи передвижения продуктов фотосинтеза модно выделить три звена:

внутриклеточное, паренхимное и флоэмное.

Поскольку передвижение начинается с хлоропластов, то хлоропласты рассматриваются как центры, дающие начало транспорта ассимилянтов в растении.

Внутриклеточный транспорт

Первым этапом в передвижении органических веществ является выход ассимилянтов из хлоропластов. Среди углеводных продуктов фотосинтеза наиболее подвижными являются триозофосфаты (фосфодиоксин), ацетон, фосфоглицериновая кислота, фосфоглицериновый альдегид – универсальные метаболиты промежуточного обмена (триозофосфаты связаны в общую систему взаимных превращений с гексофосфатами, сахарозой и крахмалом). Идея о ведущей роли триозофосфатов в оттоке ассимилянтов из хлоропластов является в настоящее время наиболее обоснованной и признанной.

Наиболее полное представление о выходе углеводов из хлоропласта через триозофосфатный путь дает схема предложенная *

Основным соединением, в форме которого углерод переносится из мембраны оболочки хлоропластов, является фосфодиоксиацетон. На его основе в цитоплазме происходит синтез главных подвижных форм углеводов для далекого транспорта. Главной формой углеводов для далекого транспорта является сахароза. Кроме сахарозы могут синтезироваться – раффиноза, стахиноза, *, сорбит, вербаскоза.

Метаболизм крахмала, отложенного в хлоропластах

Крахмал фосфорилоза глюкозо 1-фосфат изомераза +АТФ *1.6дифосфат альдороза триозофосфаты. Они легко выходят из хлоропластов в цитоплазму. На основании всего сказанного следует, что триозофосфатному механизму принадлежит великая, а может быть и универсальная роль в регулировании отношений между хлоропластами и цитоплазмой.

Межклеточный транспорт (паренхимный)

Прежде чем достичь проводящих клеток флоэмы и войти в русло далекого транспорта ассимилянты должны преодолеть пространство, которое отделяет клетку мезофилла от листовых жилок. На этом пути, измеряемом десятыми долями миллиметра ассимилянты должны пройти расстояние равное нескольким паренхимным клеткам (обычно 3-4 клетки).

Перемещение ассимилянтов к проводящим пучкам может осуществляться: по симпласту и по алопласту.

Симпластный транспорт – это передвижение органических веществ из одной клетки в другую внутри цитоплазмы через плазмодесмы.

Алопластный путь – когда продукты фотосинтеза покидают цитоплазму, выделяясь на поверхность ассимилирующих клеток (в алопласт) и там с раствором, окружающим клетки достигают проводящих пучков. Путь паренхимного транспорта ассимилянтов определяется анатомическим строением спутников ситовидных элементов.

Ситовидные элементы флоэмы семенных растений имеют два типа спутников или их аналогов:

открытый с плазмодесмами в сторону паренхимных тканей и

закрытый, без плазмодесм в этом направлении.

Им сопутствуют два принципиально разных механизма паренхимного транспорта сахаров: симпластный транспорт олигосахарозов рафинозной группы и алопластный транспорт сахарозы.

3 * флоэмы:***************************************

Сахароза проникает через клеточные стенки в 4 раза медленнее, чем вода. Почему? У нее очень крупные молекулы.

Большинству древесных растений свойственны спутники открытого типа и симпластический транспорт олигосахаридов.

Травянистым спутники закрытого типа и аллопластический транспорт сахарозы. У этой группы растений промежуточной зоной между фотосинтезирующими и проводящими клетками в листе является свободное пространство.

Флоэмный транспорт

С помощью флоэмного транспорта осуществляется перемещение ассимилянтов из производящих органов в органы потребления. Сахара движутся по флоэме в виде концентрированного раствора, в котором содержание сахаров составляет обычно 7-25% или 0,2-0,7*.

Флоэмный транспорт трудно изучать, так как опыты, нарушающие тем или иным путем тонкий баланс давления в комплексе ситовидных трубок, приводит к ошибочным результатам. Один из немногих методов, с помощью которого успешно исследовалось содержание и свойства флоэмы, основан на использовании тлей. Эти насекомые обладают уникальной способностью определять местонахождение какой-нибудь одной ситовидной трубки и прокалывать её своим стилетом во время кормления на растении. Проклов однажды ситовидную трубку они не должны больше затрачивать никаких усилий, так как под действием давления в ситовидных трубках происходит их принудительное кормление. Следовательно, природа содержимого ситовидных трубок и процессы флоэмного транспорта можно изучать используя тлей в качестве своеобразных кротов. Тело насекомого удаляют, а стилет остается воткнутым в ситовидную трубку, в виде *, через которую флоэмный сок течет под давлением.

Механизмы флоэмного транспорта

За длительный период изучения флоэмного транспорта было выдвинуто множество теорий о его механизме. Общепризнано, что транспорт по флоэме осуществляется путем перетекания растворов. Теория перетекания предложена немецким физиком Карлом Мюнхеном. Согласно этой теории перетекание растворов по флоэме полностью основано на простых принципах осмоса. Чтобы понять эту теорию, рассмотрим чисто физическую аналоговую систему: две жесткие сферы, сконструированные из мембраны с избирательной проницаемостью, погружают в воду и соединяют между собой непроницаемой трубкой. Первоначально одна сфера заполняется концентрированным раствором сахарозы (А) и другая разбавленным (В). В результате осмоса вода начинает поступать в обе сферы и в системе возникает давление. Поскольку давление возрастет в более концентрированном растворе А, оно будет передаваться по трубке к менее концентрированному раствору В. Если давление передаваемое от А превысит давление возникшее в В, то вода вместо того, чтобы поступать в В будет вынуждена выходить из него. Так как вода в этом случае поступает в А и выходит из В, перетекание раствора сахарозы будет происходить от А к В. Оно будет продолжаться до тех пор пока концентрации растворов А и В не выровняются.

В растении сахароза начинает активно накачиваться в ситовидные трубки мелких листовых жилок в ходе процесса называемого загрузкой флоэмы. Листовые жилки ветвятся многократно до тех пор, пока диаметр их отношений не оказывается равным толщине нескольких сосудов и ситовидных трубок. В этом месте они тесно примыкают к мезофилльным клеткам, принимающим активное участие в фотосинтезе. Транспорт сахарозы во флоэму избирателен и сопряжен с активным метаболизмом. Вероятно при этом происходит совместное проникновение сахарозы и водорода. Поступление в клетки флоэмы комплекса Н+ сахарозы (загрузка) и его выделение из клеток флоэмы (разгрузка) происходит путем перемещения молекул через мембраны с участием *.

Транспорт ассимилянтов во флоэме ориентируется в сторону потребляющих тканей (называемых в современной литературе аттрагирующими зонами). В растении возникает несколько аттрагирующих зон:

верхушечная меристема стебля,

кончики корней,

участки интеркалярного роста,

Эти зоны возникают в определенной последовательности соответственно программе онтогенеза растения.

У древесных растений важной аттрагирующей зоной является: камбиальный слой ствола, ветвей и корней. Потребность в ассимилянтах у каждого из этих центров в онтогенезе неодинакова. При образовании и развитии репродуктивных органов и цветков вначале возникает относительно слабая потребность в ассимилянтах. После оплодотворения потребность ассимилянтов сильно возрастает.

Ксилемный транспорт

У древесных растений к концу лета флоэма обычно разрушается. Поэтому осенью и зимой вряд ли может происходить передвижение органических веществ по флоэме. Весной в момент выхода из состояния покоя у древесных растений передвижение органических веществ происходит по ксилеме. Раствор органических веществ, перемещающихся по ксилеме называют пасокой. Пасока несет к побегам смесь органических веществ: аминокислоты, органические кислоты, сахара (береза). Аминокислоты расходуются на синтез и обновление белков. Наиболее важной транспортной формой аминокислот является аспарагиновая и глутаминовая кислоты.

Органические кислоты – используются на переаминирование и дыхание. Органические вещества, транспортирующиеся по ксилеме, являются производными дыхания.

Скорость передвижения

Средняя скорость движения:

сахароза – 70-80 см/час, аминокислоты 90 см/час.

Таким образом, органические вещества, передвигающиеся по флоэме, являются производными фотосинтеза, а вещества, передвигающиеся по ксилеме, являются производными дыхания.

Растительный организм, к отличие от животного, характеризуется большой экономностью в использовании питательных веществ, Это выражается в способности растений к реутилизации (повторному использованию) основных элементов минерального питания. Каждый" лист растения проходит свой цикл развития. Лист растет, достигает максимального размера, затем начинаются процессы старения, и наконец лист отмирает. На протяжении всей жизни листа в него поступают, питательные вещества. Одновременно какое-то количество вещества из него оттекает. В период физиологической молодости листа количество веществ, содержащих элементы минерального питания в нем увеличивается, поскольку скоростъ притока вещества. заметно превышает скорость оттока. Затем на короткий период эти два процесса (приток и отток) уравновешивают друг друга. И, наконец, по мере старения листа начинает преобладать отток. Во время цветения и листопада отток питательных веществ идет интенсивно из всех листьев. Таким образом, питательные. вещества передвигаются из корневой ­системы в надземные органы, в основном по ксилеме, а затем оттекают из листьев по флоэме до тканей стебля. Распространяясь в радиальном направлении из проводящих элементов флоэмы, пита­тельные вещества переходят вновь в сосуда ксилемы и с восходящим током направляются к более молодым органам и листьям. Следовательно, элементы питания совершают круговорот по растению. Переход из нисходящего тока (по флоэме) в восходящая ток (по ксилеме) может происходить в разных точкам стебля. Для соединений азота показано, что передвижение в нисходящем направлении идет по флоэме до корневой системы. В проводящей системе корня соединения азота переходят в восходящий ток и движутся по сосудам ксилемы. Повторное использование растительным организмом отдельных элементов оказывает влияние на их распределение. В растении существуют два ярко выраженных градиента распределения минераль­ных веществ. Для элементов, подвергающееся повторному использованию, характерен базипетальный градиент распределения, т. е. чем выше расположен лист, чем он моложе; тем больше в нем азота, фосфора, калия. Это особенно проявляется при недостатке данного элемента в почве. Для элементов, не подвергавшихся повторному использованию (калий, бор, железо) характерен акропетальный градиент распределения. Чем старше орган, тем больше содержание в нем указанных элементов. По отношению к элементам, подвергающимся повторному использованию, признаки голодания будут проявляться прежде всего на более старых листьях, тогда как по отношению к элементам не подвергавшимся реутилизации, признаки страдания проявляются в первую очередь на молодых органах.

Особенности передвижения органических веществ по растению

Листья, а точнее, хлоропласты снабжают образовавшимися в них органическими веществами все органы растительного организма. Пу­ти передвижения этих веществ неоднородны. Образовавшиеся в хло­ропласте вещества должны, прежде всего, поступить в цитоплазму, затем по паренхимным клеткам в ситовидные трубки флоэмы и по ним к различным потребляющие органам растения. Различают внутриклеточный, межклеточный паренхимный и флоэмный транспорт веществ.

1. Внутриклеточный транспорт. Выход ассимилятов из хлороплас тов. В каждом хлоропласте за день количество образовавшихся в про­цессе фотосинтеза продуктов превосходит их собственную массу. В этой связи большое значение имеет отток ассимилятов в другие части клетки, т. е, внутриклеточный транспорт. Наиболее легко через мембраны хлоропластов проникают триозофосфаты (ФГА, ФДА) которые могут выходить из хлоропластов, и вновь поступать в них. Проникновение через мембрану хлоропластов фосфорилированных гексоз затруднено. Предполагается, что образующееся в хлоропластах более сложные углеводы распадаются на триозофосфаты и в та­ком виде передвигаются в цитоплазму, где могут служить материа­лом для ресинтеза гексоз, сахарозы и крахмала. Благодаря указан­ным превращениям концентрация триозофосфатов в цитоплазме не­прерывно снижается, что способствует их притоку по градиенту концентрации. Образовавшиеся в хлоропластах белки также распадаются и оттекают в цитоплазму в виде аминокислот. На свету проницаемость мембран хлоропластов повышается, что способствует оттоку из них различных веществ.

2. Межклеточный паренхимный транспорт. Поступившие в питоплазму органические соединения не только используются на нужды данной клетки, но и направленно передвигаются к ситовидным трубкам. Межклеточный паренхимный транспорт может осуществляться двумя путями - по плазмодесмам (симпласту) или по свободному пространству (клеточном оболочкам и межклеточным пространствам паренхимы листа). В зависимости от густоты расположения проводящих элементов в листе (сети жилок) -расстояния от паренхимной клетки производящей ассимиляты до ситовидных элементов флоэмы могут быть различными. Однако в среднем оно не превышает 3- 4 клеток и составляет сотые доли миллиметра. Скорость перемещения ассимилятов в паренхимных тканях равняется примерно 10-60 см/ч. Это заметно выше скорости диффузии. При пере­движении веществ по плазмодесмам такая скорость может достигаться лишь при большой дополнительной затрате энергии. Вместе с тем не у всех растений плазмодесмы хорошо развиты. Все это позволяет считать, что паренхимный транспорт осуществляется не только через плазмодесмы. В мезофилле листа к свободному пространству (открытому для свободной диффузии) можно отнести промежутки между фибриллами целлюлозы в клеточных, стенках, а также систему никсв. Показано, что клетки мезофилла листа обладают таой секреторной способностью и легко выде.тяют сахара в свободное пространсгво. Клетки флоэмных окончаний (передаточные) усиленно абсорбируют сахара и аминокислоты. Отличительной особенностью передаточных клеток являются многочисленные выросты кле­точных стенок. Благодаря этим выростам (направленным внутрь клеток) поверхность плазмалеммы возрастает, одновременно это увеличивает емкость свободного пространства - и создает благоприятные условия для отдачи веществ во флоэму.

3. Передвижение веществ по флоэме - флоэмный транспорт. Дальний транспорт органических питательных веществ в нисходя­щем направлений осуществляется в основном по флоэме. В отличие от ксилемы ее состав входят собственно ситовидные трубки, сопровождающие кле­тки, клетки флоэмной паренхимы и лу­бяные волокна. Ситовидные трубки представляют собой вертикальные ряды вытянутых в большинстве случаев цилиндрических клеток с тонкими клеточными оболочками. Отдельные клетки (членики} отделены друг от друга си­товидными пластинками, пронизанными многочисленными порами, через кото­рое проходят цитоплазматические тяжи. К каждой клетке ситовидной трубки примыкает богатая цитоплазмой клетка-спутница. В отличие от ксилемы флоэма представляет собой совокупность живых кле­ток, В ее состав входят собственно ситовидные трубки, сопровождающие кле­тки, клетки флоэмной паренхимы и лу­бяные волокна. Ситовидные трубки представляют собой вертикальные ряды вытянутых в большинстве случаев в цилиндрические клетки с тонкими клеточными оболочками. Отдельные клетки (членики} отделены друг от друга си­товидными пластинками, пронизанными многочисленными порами, через кото­рое проходят цитоплазматические тяжи. Ситовидные трубки образуют­ся из клеток камбия и в первое время не отличаются от других клеток флоэмы. Они содержат подвижную цитоплазму с многочисленными рибосомами, пластидами, митохондриями. В центре имеется вакуоль, окруженная мембраной - тонопласгом. По мере развития структура трубок претерпевает значительные изменения. Распадается ядро; пластиды, митохондрии уменьшаются в размере; исчезает тонопласт. На месте вакуоли образуется центральная полость. Цитоплазма располагается в пристеночном слое. Отдельные продольные тяжи цитоплазмы пронизывают центральную полость. В полости располагаются сгустки округлой формы, по-видимому, это скопления микротрубочек. Одновременно с этими изменениями в ситовидных пластинках образуются поры, через которые проходит тонкие тяжи цитоплазмы (филаменты); в некоторых случаях они принимают фор­му микротрубочек. По видимому именно в этот период ситовидные трубки служат местом транспорта веществ. По мере старения в по­рах ситовидных пластинок откладывается углевод каллоза. Каллоза, сужая просветы пор, затрудняет передвижение веществ. У древесных растений отдельные элементы флоэмы функционируют только один год. По мере образования новых листьев отток из них идет по вновь организовавшимся ситовидным элементам. Большое значение имела разработка метода получения флоэмного сока с помощью сосущих насекомых, которые погружают хоботок в ситовидную трубку. Если тело насекомого отрезать, из хоботка будет вытекать флоэмный сок, который и подвергается анализу. Использование 14 СО 2 позволило проводить проводить анализ меченых соединений в проводящих элементах флоэмы. Исследования показали, что 90% или более всех веществ, передвигающихся по флоэме, составляют углеводы. Основной транспортной формой углеводов служит сахароза (С 12 Н 22 О 11). Вместе с тем у некоторых видов наря­ду с сахарозой транспортной фирмой углеводов служат олигосахара (раффиноза, стахиоза), а также некоторые спирты (маннитол, сорбитол), Моносахара (глюкоза и фруктоза) составляют малую долю передвигающихся углеводов. По-видимому, основная часть сахарозыпроисходит в паренхимных клеткам флоэмы, откуда она поступает в сетовидные трубки, кото­рые лишены ферментов, разлагающих сахарозу (инвертатазы), что и определяет сохранность этих соединений на всем пути его транс­порта. По флоэме в нисходящем направлении: может идти передвижение и других питательных элементов как в виде минеральных, так и органических соединений при их оттоке из стареющих органов в процессе реутилизации. Азотистые вещества при их повторном ис­пользовании продвигаются по флоэме в виде аминокислот и амидов. Транспорт по флоэме может идти в двух противоположных направлениях, образовавшиеся в листьях ассимиляты передвигаются как вверх - к точкам роста, цветкам и плодам, так и вниз - к корням, вместилищам запасных, питательных веществ. Определение скорости передвижения веществ по флоэме проводилось путем наблюдения за быст­ротой распространения меченых соединений. Оказалось, что скорость передвижения в ситовидных трубки достаточно высока и составляет в среднем 50-100 см/час. У разных групп растений скорость пере­движения несколько варьировать. У одного и того же растения различные органические вещества могут передвигаться с разной скоростью. Значительное влияние на скорость передвижения оказывают условия внешней среды. В отличие от передвижения по ксиле­ме на транспорт веществ по флоэме влияют все факторы, изменяющие напряженность процессов обмена веществ. Передвижение по флоэме зависит от температуры. Оказалось, что оптимальная температура колеблется между 20 и 30° С. Дальнейшее повышение температуры уже тормозит отток ассимилятов из пластинки листа. Отношение к резкому охлаждению флоэмы у разных растений неодинаково. Так, южные растения (фасоль) полностью приостанавливают транспорт при температуре 1-2°С, тогда как у сахарной свеклы подобное охлаждение лишь замедляет передвижение. Условия минерального питания оказывают заметное влияние на транспорт веществ по флоэме. Особенно этого исследований посвя­щено влиянию бора. Показано, что под влиянием бора скорость передвижения сахарозы заметно возрастает. Возможно, это связано с образованием комплексных соединений бора с углеводами. Скорость передвижения ассимилятов ускоряется, также под влиянием фосфора. Фосфорилированные формы сахаров передвигаются быстрее. Скорость передвижения меняется под влиянием калия. Возможно калий поддерживает мембранный потенциал в ситовидных пластинках и тем самым способствует передвижению веществ по флоэме. Наиболее сложен вопрос о механизме флоэмного транспорта. Движущей силой этого потока является тургорное давление. Клетки, в которых образуются сахара (донор), характеризуются высоким тургорным давлением, а в которых сахара потребляются,- низким тургорным давлением (акцептор). если эти клетки соединены между собой, то должна перетекать из клеток с высоким давлением в клетки с низ­ким давлением. Далеко не всегда пере­движение идет по градиенту тургорного давления (в сторону его уменьшения). Так, нельзя объяснить интенсив­ную переброску ассимилятов из опадающих листьев или завядающих лепестков цветка, которые обладают, естественно; низким тургорным давлением. Расчеты повязывают, что для передвижения раствора сахарозы с той скоростью, которая наблюдается в ситовидных трубках нужна сила, значительно превосходящая силу тургорного давления, развиваемую в клетках-донорах. Альтернативной гипотезой является гипотеза, согласно которой передвижение органических веществ идет по тяжам цитоплазмы с затратой энергии. Существует взаимосвязь между флоэмным транспортом и напряженностью энергетиче­ского обмена. Источником энергии для транспорта веществ может быть АТФ, образовавшаяся как в самих ситовидных так и главным образом в клетках-спутницах. Показано, что клетки-спутницы характеризуются исключительно высокой интенсивностью дыхания и фосфорилирования.

Периодические сокращения белковых тяжей ситовидных тру­бок могут способствовать перемещению веществ в определенном направлении. Электронномикроскопические исследования показали наличие белковых нитей и в порах ситовидных пластинок. Возможно, что эти белковые тяжи способны к перистальтическом сокращениям, что и вызывает проталкивание ими раствора или особых гранул-носителей, на которых сконцентрированы ассимиляты. Конечно, эти перистальтические сокращения требуют затраты энергии. Таким образом транспорт ассимилятов по флоэме осуществляется с помощью нескольких механизмов. Основное значение при этом придается тем механизмам, которые связаны с перистальтическим сокращением белковых тяжей. Важное значевле для роста растительных организмов имеет направленное движние ассимилятов. Оно во многом определяется интенсивностью использования веществ, потребностями того или иного органа, интенсивностью его роста. Большое значение в распределении питательных веществ в растении имеют фитогормоны, Транспорт питательных веществ вдет в направлении к тем органам, которые характеризуются большим содержанием фитогормонов, в частности ауксинов. Обработка отдельных растений ауксином вызывает усиление притока к ним различных органических веществ. Влияние фитогормонов на передвижение ассимилятов связано с усилением напряженности энергетического обмена. Направление передвижения ассимилятов несколько ограничено расположением производящих их органов, а именно листьев. Показательно, что листья, расположенные по разным сторонам стебля, а также различные по ярусу (верхние и нижние) снабжают продуктами фотосинтеза различные части органы растения

Глава 7. ДЫХАНИЕ РАСТЕНИЙ

Живая клетка представляет собой открытую энергетическую систему, она обменивается энергией с внешней средой и живет за счет притока энергии извне. Клетка, организма может сохранять свою индивидуальность лишь при притоке свободной энергии из окружаю­щей среды. Как только этот приток прекращается, наступает дезорганизация и смерть организма.

Энергии солнечного света, запасенная при фотосинтезе в органи­ческом веществе, вновь высвобождается и используется на самые различные процессы жизнедеятельности. Энергия квантов света, аккумулированная в углеводах, вновь быстро освобождается в процессе их распада (диссимиляции). В самой общей форме можно отметить, что все живые клетки получают энергию за счет ферментативных реакций, в ходе -которых электроды переходят с более высокого энергетического уровня на более низкий.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, вы­свобождается - это дыхание и брожение. Дыхание - это окислительный распад органических соединений на простые сопровождаемый выделением энергии. Брожение - это процесс рассада органических соединений на более простые, сопровождаемый выделением энергии. При брожении степень окисленности соединений не меняется. В случае дыхания акцептором электрона служит кислород, в слу­чае брожения - органические соединения. Процессы, входящие в энергетический цикл, имеют настолько важное значение, что в нас­тоящее время возникла наука биоэнергетика, изучающая молекулярные и субмолекулярные основы трансформации энергии.

Похожие статьи