Центробежная сила инерции. Центробежная сила в природе

Ранее рассматривались характеристики прямолинейного движения: перемещение, скорость, ускорение . Их аналогами при вращательном движении являются: угловое перемещение, угловая скорость, угловое ускорение .

  • Роль перемещения во вращательном движении играет угол ;
  • Величина угла поворота за единицу времени - это угловая скорость ;
  • Изменение угловой скорости за единицу времени - это угловое ускорение .

Во время равномерного вращательного движения тело совершает движение по окружности с одинаковой скоростью, но с изменяющимся направлением. Например, такое движение совершают стрелки часов по циферблату.

Допустим, шар равномерно вращается на нити длиной 1 метр. При этом он будет описывать окружность с радиусом 1 метр. Длина такой окружности: C = 2πR = 6,28 м

Время, за которое шар полностью делает один полный оборот по окружности, называется периодом вращения - T .

Чтобы вычислить линейную скорость шара, необходимо разделить перемещение на время, т.е. длину окружности на период вращения:

V = C/T = 2πR/T

Период вращения:

T = 2πR/V

Если наш шар будет делать один оборот за 1 секунду (период вращения = 1с), то его линейная скорость:
V = 6,28/1 = 6,28 м/с

2. Центробежное ускорение

В любой точке вращательного движения шара вектор его линейной скорости направлен перпендикулярно радиусу. Нетрудно догадаться, что при таком вращении по окружности, вектор линейной скорости шара постоянно меняет свое направление. Ускорение, характеризующее такое изменение скорости, называется центробежным (центростремительным) ускорением .

Во время равномерного вращательного движения меняется только направление вектора скорости, но не величина! Поэтому линейное ускорение = 0 . Изменение линейной скорости поддерживается центробежным ускорением, которое направлено к центру окружности вращения перпендикулярно вектору скорости - a ц .

Центробежное ускорение можно вычислить по формуле: a ц = V 2 /R

Чем больше линейная скорость тела и меньше радиус вращения, тем центробежное ускорение больше.

3. Центробежная сила

Из прямолинейного движения мы знаем, что сила равна произведению массы тела на его ускорение.

При равномерном вращательном движении на вращающееся тело действует центробежная сила:

F ц = ma ц = mV 2 /R

Если наш шарик весит 1 кг , то для удержания его на окружности понадобится центробежная сила:

F ц = 1·6,28 2 /1 = 39,4 Н

С центробежной силой мы сталкиваемся в повседневной жизни при любом повороте.

Сила трения должна уравновесить центробежную силу:

F ц = mV 2 /R; F тр = μmg

F ц = F тр; mV 2 /R = μmg

V = √μmgR/m = √μgR = √0,9·9,8·30 = 16,3 м/с = 58,5 км/ч

Ответ : 58,5 км/ч

Обратите внимание, что скорость в повороте не зависит от массы тела!

Наверняка вы обращали внимание, что некоторые повороты на шоссе имеют некоторый наклон внутрь поворота. Такие повороты "легче" проходить, вернее, можно проходить с бОльшей скоростью. Рассмотрим какие силы действуют на автомобиль в таком повороте с наклоном. При этом силу трения учитывать не будем, а центробежное ускорение будет компенсироваться только горизонтальной составляющей силы тяжести:


F ц = mV 2 /R или F ц = F н sinα

В вертикальном направлении на тело действует сила тяжести F g = mg , которая уравновешивается вертикальной составляющей нормальной силы F н cosα :

F н cosα = mg , отсюда: F н = mg/cosα

Подставляем значение нормальной силы в исходную формулу:

F ц = F н sinα = (mg/cosα)sinα = mg·sinα/cosα = mg·tgα

Т.о., угол наклона дорожного полотна:

α = arctg(F ц /mg) = arctg(mV 2 /mgR) = arctg(V 2 /gR)

Опять обратите внимание, что в расчетах не участвует масса тела!

Задача №2: на некотором участке шоссе имеется поворот с радиусом 100 метров. Средняя скорость прохождения этого участка дороги автомобилями 108 км/ч (30 м/с). Каким должен быть безопасный угол наклона полотна дороги на этом участке, чтобы автомобиль "не вылетел" (трением пренебречь)?

α = arctg(V 2 /gR) = arctg(30 2 /9,8·100) = 0,91 = 42° Ответ : 42° . Довольно приличный угол. Но, не забывайте, что в наших расчетах мы не принимаем во внимание силу трения дорожного полотна.

4. Градусы и радианы

Многие путаются в понимании угловых величин.

При вращательном движении основной единицей измерения углового перемещения является радиан .

  • 2π радиан = 360° - полная окружность
  • π радиан = 180° - половина окружности
  • π/2 радиан = 90° - четверть окружности

Чтобы перевести градусы в радианы, необходимо значение угла разделить на 360° и умножить на 2π . Например:

  • 45° = (45°/360°)·2π = π/4 радиан
  • 30° = (30°/360°)·2π = π/6 радиан

Ниже в таблице представлены основные формулы прямолинейного и вращательного движения.

Лабораторная работа № 1.9

Темы для изучения

Центробежная сила, вращательное движение, угловая скорость, сила инерции.

Принцип

Тело с переменной массой движется по окружности с переменным радиусом и переменной угловой скоростью. Устанавливается зависимость центробежной силы тела от вышеуказанных параметров.

Оборудование

Аппарат для изучения центробежной силы 11008.00 1

Тележка 11060.00 1

Крепежный болт 03949.00 1

Лабораторный двигатель, ~220 В 11030.93 1

Приводной механизм, 30/1

для лабораторного двигателя 11029.00 1

Подшипниковый блок 02845.00 1

Приводной ремень 03981.00 1

Штатив с отверстием, l=100 мм 02036.01 1

Цилиндрическая опора 02006.55 1

Источник питания, 5В/2,4 А 11076.99 1

Держатель для пружинных весов 03065.20 1

Штатив -PASS-, прямоугольный, l=250 мм 02025.55 1

Зажим-насадка

для круглых или прямоугольных стержней 02043.00 2

Настольный зажим -PASS- 02010.00 2

Леса, = 100 м 02090.00 1

Динамометр, 2 Н 03065.03 1

Гиря с прорезью, 10 г, черная 02205.01 4

Гиря с прорезью, 50 г, черная 02206.01 2

Световой барьер со счетчиком 11207.30 1

Дополнительно:

Лабораторный двигатель, ~115 В 11030.90 1

Цель

Определить зависимость центробежной силы от:

угловой скорости;

расстояния от оси вращения до центра тяжести тележки.

Рис. 1: Экспериментальная установка для измерения центробежной силы.

Установка и ход работы

Соберите установку как показано на Рис. 1. Прикрепите красный указатель на стержень, установленный в центре тележки. С его помощью можно определить расстояние от оси вращения до центра тяжести тележки. На конце дорожки для изучения центробежной силы между направляющими стержнями приклейте отметку для светового барьера. При измерении времени полного оборота переключитесь в режим .

Убедитесь, что тележка не соприкасается со световым барьером при движении по максимальному радиусу.

С увеличением угловой скорости увеличивается радиус благодаря изменению центробежной силы, которая компенсируется действием динамометра.

Определение зависимости центробежной силы от массы.

Добавьте к тележке дополнительные гири. Аппарат для изучения центробежной силы вращается с постоянной скоростью и данной массой. Определите возникающую при этом силу при помощи динамометра. С помощью блока тележка подсоединяется нитью к динамометру (длина нити примерно 26 см) и крючку. Отведите динамометр в крайнее нижнее положение. Постоянная угловая скорость во время всего эксперимента определяется частотой вращения мотора. Определите силу для тележки без дополнительной нагрузки. Положение красного указателя отметьте кусочком липкой ленты. Для этого остановите мотор, выключив источник питания. Положите на тележку дополнительные гири и растяните динамометр так, чтобы тележка остановилась перед блоком. Включите источник питания. Зафиксируйте динамометр в крайнем верхнем положении и оттяните его вниз (с интервалом в 1 см). При этом указатель на тележке должен приблизиться к отмеченному положению «». Определите соответствующую силу , когда указатель совпадет с положением «».

Замечание

Если тележка движется за отметкой, выключите мотор. Подтяните динамометр вверх и перезапустите мотор.

Определение зависимости центробежной силы от угловой скорости.

В этой части эксперимента масса тележки остается постоянной. Отметьте заранее определенный радиус (например, =20 см) кусочком липкой ленты. При различных угловых скоростях тележка достигает положения (регулируйте динамометр, как в предыдущей части опыта). Определите соответствующую силу . Зная период вращения , рассчитайте угловую скорость .

Определение зависимости центробежной силы от массы тележки и расстояния до оси вращения.

Масса тележки остается постоянной. Постоянная угловая скорость в течении всего цикла задается частотой вращения мотора. Увеличьте радиус окружности , передвинув динамометр. Определите соответствующую силу и радиус .

Рис. 2: Масса тела в подвижной системе координат.

Теория и расчет

Для системы координат, которая вращается с угловой скоростью уравнение движения материальной точки (с массой и радиус-вектором ) имеет вид:

(1)

Сила тяжести уравновешивается реакцией дорожки. Тележка находится в состоянии покоя в подвижной системе координат, которая вращается с постоянной угловой скоростью (= 0; = const = 0; = const.).

Рис. 3: Зависимость центробежной силы от массы .

Рассмотрим два случая проявления центробежной силы инерции.

Пример 1. Рассмотрим вращающийся диск с закрепленными на нем стойками с шариками, подвешенными на нитях (рис.2). При вращении диска с постоянной угловой скоростью w шарики отклоняются на некоторый угол, тем больший, чем дальше он находится от оси вращения. Относительно инерциальной системы отсчета (неподвижной) все шарики движутся по окружности соответствующего радиуса R , при этом на шарики действует результирующая сила (рис.3).

Рис.2

Рис.3

Согласно второму закону Ньютона

учитывая, что F /P =tgα, можно записать

т.е. угол отклонения шарика зависит от угловой скорости и от его удаления от оси вращения диска.

Относительно неинерциальной системы отсчета, связанной с вращающимся диском, шарик находится в покое.

Это возможно в том случае, если сила (8) уравновешена силой инерции , называемой центробежной силой инерции :

Пример 2. Рассмотрим диск, вращающийся вокруг перпендикулярной к нему вертикальной оси z с угловой скоростью ω. Вместе с диском вращается надетый на тонкую спицу шарик, соединенный с центром диска пружиной (рис. 4).

Рис.4

Шарик занимает на стержне некоторое положение, при котором сила натяжения пружины (она будет центростремительной) оказывается равной произведению массы шарика m на его ускорение:

где – нормальное ускорение на шарике; r – расстояние от оси вращения до центра шарика.

Относительно системы отсчета, связанной с диском, шарик покоится. Это формально можно объяснить тем, что кроме силы упругости на шарик действует сила инерции, модуль которой равен силе упругости (7):

Сила инерции направлена вдоль радиуса от центра диска. Силу инерции (8), возникающую в равномерно вращающейся системе отсчета, называют центробежной силой инерции . Эта сила действует на тело во вращающейся системе отсчета, независимо от того, покоится тело в этой системе или движется относительно нее со скоростью . Если положение тела во вращающейся системе отсчета характеризовать радиус-вектором , то центробежную силу можно представить в виде

где – компонента радиус-вектора, направленная перпендикулярно оси вращения.

Центробежные силы , как и всякие силы инерции, существуют только в ускоренно движущихся (вращающихся) системах отсчета и исчезают при переходе к инерциальным системам отсчета.

Действию центробежной силы подвергается, например, пассажир в движущемся автобусе на поворотах. Если в центробежной машине подвесить на нитях несколько шариков и привести машину в быстрое вращение, то центробежные силы инерции отклонят шарики от оси вращения. Угол отклонения тем больше, чем дальше шарик отстоит от оси. Центробежные силы используются в центробежных сушилках для отжима белья, в сепараторах для отделения сливок от молока, в центробежных насосах, центробежных регуляторах и т.д. Их надо учитывать при проектировании быстровращающихся деталей механизмов.

Чаще всего силы инерции проявляются статически в давлении, которое какое-либо тело, развивающее силу инерции, оказывает на другое тело, повинное в изменении состояния движения первого тела. Груз, ускоренно поднимаемый кверху, оказывает на платформу вследствие силы инерции дополнительное давление (рис. 23). Наблюдателю, тянущему канат, кажется, что груз тем более «увеличивается в весе», чем с большим ускорением его поднимают.

Рис. 23. «Увеличение веса» при поднятии с ускорением происходит за счет развиваемой телом силы инерции.

Когда давление или натяжение со стороны каких-либо тел вынуждает некоторое движущееся тело отклоняться от прямолинейного пути, мы говорим, что отклоняющееся от прямолинейного пути тело развивает центробежную силу инерции, направленную противоположно центростремительной силе, с которою тела, вызвавшие искривление траектории, давят на движущееся тело или тянут его. По закону равенства действия и противодействия эти две силы численно всегда одинаковы, поэтому центробежная сила определяется формулой

или, что то же:

Центростремительная сила направлена всегда к центру кривизны и приложена к движущемуся телу; центробежная сила равна центростремительной по величине, но направлена в противоположную сторону, т. е. от центра кривизны в сторону выпуклости траектории, и приложена к телам, вызывающим искривление траектории движущегося тела.

Массивный шар, подвешенный на прочной нити, натягивает ее при покое с силой тяжести шара но, будучи приведен в колебание, он натягивает ее с силой большей, чем его тяжесть, на величину развиваемой им центробежной силы инерции:

Автомобиль, проезжающий помосту, несколько прогибающемуся под его тяжестью, давит на мост с силой, превышающей вес автомобиля на величину центробежной силы инерции. Поэтому при прочих равных условиях давление автомобиля на вогнутый мост будет тем более велико, чем больше скорость движения автомобиля. Чтобы избежать действия центробежных сил, мосты делают обычно несколько выпуклыми (рис. 24). В этом случае вес быстро движущихся по мосту машин частью проявляется динамически, сообщая им центростремительное ускорение, направленное вниз; поэтому давление на выпуклый мост быстро проезжающих по нему машин будет меньше их веса.

На закруглениях пути колеса вагонов поезда или трамвая оказывают внешний рельс горизонтальное давление вследствие

Рис. 24 Проезжая по выпуклому мосту, автомобиль давит на моете силой, меньшей своего веса

развиваемой вагоном центробежной силы инерции. Чтобы не происходило опрокидывания вагона, равнодействующая давления, создаваемого весом вагона, и центробежной силы должна быть направлена между рельсами перпендикулярно к поверхности рельса; для этого на закруглениях внешний рельс прокладывают несколько выше внутреннего (рис. 25).

Рис. 25. На закруглениях внешний рельс укладывают выше внутреннего,

По аналогичным причинам конькобежец, описывая окружность, наклоняет свой корпус к центру окружности (рис. 26). Отметим еще раз, что на рис. 25 и 26, как это вообще принято в данном курсе, волнистыми стрелками показаны статические проявления сил (в первом случае - сил, приложенных к рельсу, во втором - ко льду). На рис. 26, кроме того, показано, как реакция опоры и вес конькобежца обеспечивают в сумме центростремительную силу, которая приложена к центру инерции конькобежца и проявляется динамически в центростремительном ускорении при движении конькобежца по дуге окружности. Точно таким же построением можно было бы дополнить и рис. 25. Центростремительное ускорение, обеспечивающее движение вагона по закруглению пути, при правильном подъеме наружного рельса (как и в случае, изображенном на рис. 26) создается за счет геометрической суммы реакции рельсов и веса вагона. Наклон полотна хотя и не устраняет горизонтальной составляющей давления колес на рельсы, но снижает (при правильном угле наклона - до нуля) боковое давление бандажей, параллельное плоскости шпал. Если бы наружный рельс не был приподнят и, таким образом, на закруглениях вагон двигался бы строго вертикально, то, кроме тенденции к опрокидыванию, развивались бы большие силы, смещающие крепление рельсов к шпалам; в этом случае центростремительная сила на закруглениях пути создавалась бы за счет указанных сил, стремящихся оторвать наружный рельс, тогда как при правильном наклоне полотна никаких смещающих сил в плоскости полотна нет, так как итоговое давление на рельсы перпендикулярно к этой плоскости,

В случаях, подобных представленному на рис. 26, центростремительная сила приложена к центру тяжести движущегося тела, а точки приложения центробежной силы определяются геометрическими условиями соприкосновения движущегося тела с телом, к которому приложена центробежная сила и противодействие которого обеспечивает кривизну траектории; поэтому указанные

численно равные силы хотя и направлены, как действие и противодействие, антипараллельно, но не по одной прямой.

Вещество вращающегося твердого тела находится в напряженном состоянии, так как каждая частица вращающегося тела развивает центробежную силу инерции, приложенную к смежным частицам тела, препятствующим рассматриваемой частице удалиться от оси вращения. Силы инерции, направленные по радиусу от центра, стремятся оторвать внешние слои вещества от внутренних.

Рис. 26 Описывая дугу окружности, конькобежец наклоняет свой корпус так, чтобы реакция льда проходила через центр тяжести тела, тогда равнодействующая реакции R и веса дает центростремительную силу

Если прочность вещества недостаточна, то при большой скорости вращения центробежные силы инерции разрушают тело, разрывая его на части. Во избежание подобных аварий все быстро вращающиеся части машин (роторы) и быстроходные маховики изготовляют из наиболее прочных металлов (обычно из стали).

О величине центробежных сил инерции во вращающихся частях машин можно судить по следующему примеру. Ротор одного из гирокомпасов при диаметре 12 см и весе 2,5 кг делает 20 000 об/мин. Центробежная сила, развиваемая на его ободе какой-либо массой, в 25 тысяч раз превышает вес этой массы.

Силы инерции часто оказывают разрушительное действие на отдельные части машин. Когда колесо насажено на ось так, что вся масса его распределена симметрично относительно оси вращения, то центробежные силы инерции, развиваемые отдельными частицами колеса, уравновешиваются на оси вращения и сказываются только в упругом натяжении вещества колеса. При очень больших скоростях это натяжение может привести к разрыву колеса. Но если масса колеса распределена относительно оси вращения несимметрично, то уже при сравнительно небольших скоростях центробежные силы инерции, которые в этом случае не уравновешиваются на оси, могут привести к поломке оси.

У колес паровоза несимметричное распределение сил инерции способно создать одностороннее давление на ось в несколько тонн; в связи с этим при вращении такого колеса давление колеса на рельс то возрастает (когда результирующая неуравновешенных центробежных сил направлена вниз), то убывает (когда она направлена вверх) - рельс как бы находится под действием ударов тяжелого молота.

При проектировании какой-либо новой машины производят детальный расчет сил инерции, которые могут возникнуть в ней при различных условиях ее работы. С проявлением неуравновешенных сил инерции приходится вести борьбу посредством точного распределения масс и согласования движений отдельных частей машины.

Но силы инерции, в частности центробежные силы, имеют в технике также и положительное применение, весьма обширное и разнообразное (работа молотов, центробежные машины, центрифуги и т. д.).

Заметим, что термин «центробежная сила» не вполне удачен; он наталкивает на неправильное понимание этой силы. Термин «центробежная сила» побуждает думать о движении от центра вращения по радиусу. Хотя центробежная сила и действует по радиусу от центра, но никакого движения в этом направлении она не вызывает и не способна вызвать потому, что она приложена к связям. Если связи, удерживавшие тело на неизменном расстоянии от центра, вдруг устранены (например, разорвалась веревка, к которой привязан камень, вращаемый нами по окружности), то двигавшееся по окружности тело будет удаляться от центра окружности, конечно, не по радиусу, а по касательной к окружности, так как оно по инерции сохранит то направление скорости, которое имело в момент разрыва связей.

Формулы

Обычно понятие центробежной силы используется в рамках классической (Ньютоновской) механики , которой касается основная часть данной статьи (хотя обобщение этого понятия и может быть в некоторых случаях достаточно легко получено для релятивистской механики).

По определению, центробежной силой называется сила инерции (то есть в общем случае - часть полной силы инерции) в неинерциальной системе отсчета, не зависящая от скорости движения материальной точки в этой системе отсчета, а также не зависящая от ускорений (линейных или угловых) самой этой системы отсчета относительно инерциальной системы отсчета.

Для материальной точки центробежная сила выражается формулой:

- центробежная сила приложенная к телу, - масса тела, - угловая скорость вращения неинерциальной системы отсчёта относительно инерциальной (направление вектора угловой скорости определяется по правилу буравчика), - радиус-вектор тела во вращающейся системе координат.

Эквивалентное выражение для центробежной силы можно записать как

если использовать обозначение для вектора, перпендикулярного оси вращения и проведенного от неё к данной материальной точке.

Центробежная сила для тел конечных размеров может быть рассчитана (как это обычно делается и для любых других сил) суммированием центробежных сил, действующих на материальные точки, являющиеся элементами, на которые мы мысленно разбиваем конечное тело.

Вывод

Следует иметь в виду, что для правильного описания движения тел во вращающихся системах отсчёта, кроме центробежной силы следует также вводить силу Кориолиса .

В литературе встречается и совсем другое понимание термина «центробежная сила». Так иногда называют реальную силу, приложенную не к совершающему вращательное движение телу, а действующую со стороны тела на ограничивающие его движение связи. В рассмотренном выше примере так называли бы силу, действующую со стороны шарика на пружину. (См., например, ниже ссылку на БСЭ.)

Центробежная сила как реальная сила

Центростремительная и центробежная силы при движении тел по круговым траекториям с общей осью вращения

Применяемый не к связям, а, наоборот, к поворачиваемому телу, как объекту своего воздействия, термин «центробежная сила» (букв. cила, приложенная к поворачивающемуся или вращающемуся материальному телу, заставляющего его бежать от мгновенного центра поворота), есть эвфемизм, основанный на ложном толковании первого закона (принципа Ньютона) в форме:

Всякое тело сопротивляется изменению своего состояния покоя или равномерного прямолинейного движения под действием внешней силы

Всякое тело стремится сохранять состояние покоя или равномерного прямолинейного движения до тех пор, пока не подействует внешняя сила.

Отголоском этой традиции и является представление о некоей силе , как о материальном факторе, реализующем это сопротивление или стремление. О существовании такой силы уместно было бы говорить, если бы, например, вопреки действующим силам, движущееся тело сохраняло бы свою скорость, но это не так .

Использование термина «центробежная сила» правомочно тогда, когда точкой её приложения является не испытывающее поворот тело, а ограничивающее его движение связи. В этом смысле центробежная сила представляет собой один из членов в формулировке третьего закона Ньютона, антагониста центростремительной силе, вызывающей поворот рассматриваемого тела и к нему приложенной. Обе эти силы равны по величине и противоположны по направлению, но приложены к разным телам и потому не компенсируют друг друга, а вызывают реально ощутимый эффект - изменение направление движения тела (материальной точки).

Оставаясь в инерциальной системе отсчёта , рассмотрим два небесных тела, например, компонента двойной звезды с массами одного порядка величины и , находящихся на расстоянии друг от друга. В принятой модели эти звёзды рассматриваются как материальные точки и есть расстояние между их центрами масс. В роли связи между этими телами выступает сила Всемирного тяготения , где - гравитационная постоянная. Это - единственная здесь действующая сила, она вызывает ускоренное движение тел навстречу друг другу.

Однако, в том случае, если каждое из этих тел совершает вращение вокруг общего центра масс с линейными скоростями = и = , то подобная динамическая система будет неограниченное время сохранять свою конфигурацию, если угловые скорости вращения этих тел будут равны: = = , а расстояния от центра вращения (центра масс) будут соотноситься, как: = , причём , что непосредственно следует из равенства действующих сил: и , где ускорения равняются соответственно: = и .

Центростремительные силы, вызывающие движение тел по круговым траекториям равны (по модулю): =. При этом первая из них является центростремительной, а вторая - центробежной и наоборот: каждая из сил в соответствии с Третьим законом является и той, и другой.

Поэтому, строго говоря, использование каждого из обсуждаемых терминов излишне, поскольку они не обозначают никаких новых сил, являясь синонимами единственной силы - силы тяготения. То же самое справедливо и в отношении действия любой из упомянутых выше связей.

Однако, по мере изменения соотношения между рассматриваемыми массами, то есть всё более значительного расхождения в движении обладающих этими массами тел, разница в результатах действия каждой из рассматриваемых тел для наблюдателя становится всё более значительной.

В ряде случаев наблюдатель отождествляет себя с одним из принимающих участие тел, и потому оно становится для него неподвижным. В этом случае при столь большом нарушении симметрии в отношении к наблюдаемой картине, одна из этих сил оказывается неинтересной, поскольку практически не вызывает движения.

См. также

Примечания

Ссылки

  • Матвеев А. Н. Механика и теория относительности: Учебник для студентов вузов. - 3-е издание. - М.: ООО "Издательский дом «ОНИКС 21 век»: ООО "Издательство «Мир и образование», 2003. - с. 405-406

Похожие статьи