Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов. Интегрирование простейших (элементарных) дробей Интегрирование простейших дробей 1 3 типов

Как мы увидим ниже, далеко не всякая элементарная функция имеет интеграл, выражающийся в элементарных функциях. Поэтому очень важно выделить такие классы функций, интегралы которых выражаются через элементарные функции. Простейшим из этих классов является класс рациональных функций.

Всякую рациональную функцию можно представить в виде рациональной дроби, т. е. в виде отношения двух многочленов:

Не ограничивая общности рассуждения, будем предполагать, что многочлены не имеют общих корней.

Если стецень числителя ниже степени знаменателя, то дробь называется правильной, в противном случае дробь называется неправильной.

Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), можно представить данную дробь в виде суммы многочлена и некоторой правильной дроби:

здесь многочлен, а - правильная дробь.

Пример t. Пусть дана неправильная рациональная дробь

Разделив числитель на знаменатель (по правилу деления многочленов), получим

Так как интегрирование многочленов не представляет затруднений, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.

Определение. Правильные рациональные дроби вида

называются простейшими дробями I, II, III и IV типов.

Интегрирование простейших дробей типа I, II и III не составляет большой трудности, поэтому мы проведем их интегрирование без каких-либо дополнительных пояснений:

Более сложных вычислений требует интегрирование простейших дробей IV типа. Пусть нам дан интеграл такого типа:

Произведем преобразования:

Первый интеграл берется подстановкой

Второй интеграл - обозначим его через запишем в виде

по предположению корни знаменателя комплексные, а следовательно, Далее поступаем следующим образом:

Преобразуем интеграл:

Интегрируя по частям, будем иметь

Подставляя это выражение в равенство (1), получим

В правой части содержится интеграл того же типа, что но показатель степени знаменателя подынтегральной функции на единицу ниже ; таким образом, мы выразили через . Продолжая идти тем же путем, дойдем до известного интеграла.

Прежде, чем приступить к интегрированию простейших дробей для нахождения неопределенного интеграла дробно рациональной функции, рекомендуется освежить в памяти раздел «Разложение дроби на простейшие».

Пример 1

Найдем неопределенный интеграл ∫ 2 x 3 + 3 x 3 + x d x .

Решение

Выделим целую часть, проведя деление столбиком многочлена на многочлен, учитывая тот факт, что степень числителя подынтегральной функции равна степени знаменателя:

Поэтому 2 x 3 + 3 x 3 + x = 2 + - 2 x + 3 x 3 + x . Мы получили правильную рациональную дробь - 2 x + 3 x 3 + x , которую теперь разложим на простейшие дроби - 2 x + 3 x 3 + x = 3 x - 3 x + 2 x 2 + 1 . Следовательно,

∫ 2 x 3 + 3 x 3 + x d x = ∫ 2 + 3 x - 3 x + 2 x 2 + 1 d x = ∫ 2 d x + ∫ 3 x d x - ∫ 3 x + 2 x 2 + 1 d x = 2 x + 3 ln x - ∫ 3 x + 2 x 2 + 1 d x

Мы получили интеграл простейшей дроби третьего типа. Взять его можно методом подведения под знак дифференциала.

Так как d x 2 + 1 = 2 x d x , то 3 x d x = 3 2 d x 2 + 1 . Поэтому
∫ 3 x + 2 x 2 + 1 d x = ∫ 3 x x 2 + 1 d x + ∫ 2 x 2 + 1 = 3 2 ∫ d x 2 + 1 x 2 + 1 + 2 ∫ d x x 2 + 1 = 3 2 ln x 2 + 1 + 2 a r c t g x + C 1

Следовательно,
∫ 2 x 3 + 3 x 3 + x d x = 2 x + 3 ln x - ∫ 3 x + 2 x 2 + 1 d x = 2 x + 3 ln x - 3 2 ln x 2 + 1 - 2 a r c tan x + C , где С = - С 1

Опишем методы интегрирования простейших дробей каждого из четырех типов.

Интегрирование простейших дробей первого типа A x - a

Используем для решения этой задачи метод непосредственного инетгрирования:

∫ A x - a d x = A ∫ d x x - a = A · ln x - a + C

Пример 2

Найдите множество первообразных функции y = 3 2 x - 1 .

Решение

Испльзуя правило интегрирования, свойства первообразной и таблицу первообразных, найдем неопределенный интеграл ∫ 3 d x 2 x - 1: ∫ f k · x + b d x = 1 k · F k · x + b + C

∫ 3 d x 2 x - 1 = 3 ∫ d x 2 x - 1 2 = 3 2 ∫ d x x - 1 2 = 3 2 ln x - 1 2 + C

Ответ: ∫ 3 d x 2 x - 1 = 3 2 ln x - 1 2 + C

Интегрирование простейших дробей второго типа A x - a n

Здесь также применим метод непосредственного интегрирования: ∫ A x - a n d x = A ∫ x - a - n d x = A - n + 1 x - a - n + 1 + C = A 1 - n x - a n - 1 + C

Пример 3

Необходимо найти неопределенный интеграл ∫ d x 2 x - 3 7 .

Решение

∫ d x 2 x - 3 7 = ∫ d x 2 x - 3 2 7 = 1 2 7 ∫ x - 3 2 - 7 d x = = 1 2 7 · 1 - 7 + 1 · x - 3 2 - 7 + 1 + C = 1 2 7 · - 6 · x - 3 2 6 + C = = 1 2 · - 6 · 2 6 · x - 3 2 6 + C = - 1 12 · 1 2 x - 3 6 + C

Ответ: ∫ d x 2 x - 3 7 = - 1 12 · 1 2 x - 3 6 + C

Интегрирование простейших дробей третьего типа M x + N x 2 + p x + q , D = p 2 - 4 q < 0

Первым шагом представим неопределенный интеграл ∫ M x + N x 2 + p x + q в виде суммы:

∫ M x + N x 2 + p x + q d x = ∫ M x x 2 + p x + q d x + N ∫ d x x 2 + p x + q

Для того, чтобы взять первый интеграл, используем метод подведения под знак дифференциала:

∫ M x x 2 + p x + q d x = d x 2 + p x + q = 2 x + p d x = 2 x d x + p d x ⇒ 2 x d x = d x 2 + p x + q - p d x ⇒ M x d x = M 2 d x 2 + p x + q - p M 2 d x = = ∫ M 2 d x 2 + p x + q - p M 2 d x x 2 + p x + q = = M 2 ∫ d x 2 + p x + q x 2 + p x + q - p M 2 ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q - p M 2 ∫ d x x 2 + p x + q

Поэтому,
∫ M x + N x 2 + p x + q d x = ∫ M x x 2 + p x + q d x + N ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q - p M 2 ∫ d x x 2 + p x + q + N ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q + 2 N - p M 2 · ∫ d x x 2 + p x + q

Мы получили интеграл ∫ d x x 2 + p x + q . Проведем преобразование его знаменателя:

∫ d x x 2 + p x + q = ∫ d x x 2 + p x + p 2 2 - p 2 2 + q = = ∫ d x x + p 2 2 - p 2 4 + q = ∫ d x x + p 2 2 - p 2 4 + q = = ∫ d x x + p 2 2 + 4 q - p 2 4 = 2 4 q - p 2 · a r c t g 2 x + p 2 4 q - p 2 + C 1

Следовательно,

∫ M x + N x 2 + p x + q d x = M 2 ln x 2 + p x + q + 2 N - p M 2 · ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q + 2 N - p M 2 · 2 4 q - p 2 · a r c t g 2 x + p 2 4 q - p 2 + C 1

Формула интегрирования простейших дробей третьего типа принимает вид:
∫ M x + N x 2 + p x + q d x = M 2 ln x 2 + p x + q + 2 N - p M 4 q - p 2 · a r c t g 2 x + p 2 4 q - p 2 + C

Пример 4

Необходимо найти неопределенный интеграл ∫ 2 x + 1 3 x 2 + 6 x + 30 d x .

Решение

Применим формулу:

∫ 2 x + 1 3 x 2 + 6 x + 30 d x = 1 3 ∫ 2 x + 1 x 2 + 2 x + 10 d x = M = 2 , N = 1 , p = 2 , q = 10 = = 1 3 2 2 ln x 2 + 2 x + 10 + 2 · 1 - 2 · 2 4 · 10 - 2 2 a r c t g 2 x + 2 2 4 · 10 - 2 2 + C = = 1 3 ln x 2 + 2 x + 10 - 1 9 a r c t g x + 1 3 + C

Второй вариант решения выглядит следующим образом:

∫ 2 x + 1 3 x 2 + 6 x + 30 d x = 1 3 ∫ 2 x + 1 x 2 + 2 x + 10 d x = d (x 2 + 2 x + 10 = (2 x + 2) d x = = 1 3 ∫ 2 x + 2 - 1 x 2 + 2 x + 10 d x = 1 3 ∫ d (x 2 + 2 x + 10) x 2 + 2 x + 10 = 1 3 ∫ d x x 2 + 2 x + 10 = = п р е о б р а з у е м з н а м е н а т е л ь = 1 3 ln x 2 + 2 x + 10 - 1 3 ∫ d (x) x + 1 2 + 9 = = 1 3 ln x 2 + 2 x + 10 - 1 9 a r c t g x + 1 3 + C

Ответ: ∫ 2 x + 1 3 x 2 + 6 x + 30 d x = 1 3 ln x 2 + 2 x + 10 - 1 9 a r c t g x + 1 3 + C

Интегрирование простейших дробей четвертого типа M x + N (x 2 + p x + q) n , D = p 2 - 4 q < 0

Первым делом выполняем подведение под знак дифференциала:

∫ M x + N x 2 + p x + q d x = d (x 2 + p x + q) = (2 x + p) d x = = M 2 ∫ d (x 2 + p x + q) (x 2 + p x + q) n + N - p M 2 ∫ d x (x 2 + p x + q) n = = M 2 (- n + 1) · 1 (x 2 + p x + q) n - 1 + N - p M 2 ∫ d x (x 2 + p x + q) n

Затем находим интеграл вида J n = ∫ d x (x 2 + p x + q) n с использованием рекуррентных формул. Информацию о рекуррентных формулах можно посмотреть в теме «Интегрирование с использованием рекуррентных формул».

Для решения нашей задачи подходит рекуррентная формула вида J n = 2 x + p (n - 1) (4 q - p 2) (x 2 + p x + q) n - 1 + 2 n - 3 n - 1 · 2 4 q - p 2 · J n - 1 .

Пример 5

Необходимо найти неопределенный интеграл ∫ d x x 5 x 2 - 1 .

Решение

∫ d x x 5 x 2 - 1 = ∫ x - 5 (x 2 - 1) - 1 2 d x

Мы будем использовать для этого вида подынтегральной функции метод подстановки. Введем новую переменную x 2 - 1 = z 2 x = (z 2 + 1) 1 2 d x = z (z 2 + 1) - 1 2 d x

Получаем:

∫ d x x 5 x 2 - 1 = ∫ x - 5 (x 2 - 1) - 1 2 d x = = ∫ (z 2 + 1) - 5 2 · z - 1 · z · (z 2 + 1) - 1 2 d z = ∫ d z (z 2 + 1) 3

Пришли к нахождению интеграла дроби четвертого типа. В нашем случае имеем коэффициенты М = 0 , р = 0 , q = 1 , N = 1 и n = 3 . Применяем рекуррентную формулу:

J 3 = ∫ d z (z 2 + 1) 3 = 2 z + 0 (3 - 1) · (4 · 1 - 0) · z 2 + 1 3 - 1 + 2 · 3 - 3 3 - 1 · 2 4 · 1 - 0 · ∫ d z (z 2 + 1) 2 = = z 4 (z 2 + 1) 2 + 3 4 2 z (2 - 1) · (4 · 1 - 0) · (z 2 + 1) 2 - 1 + 2 · 2 - 3 2 - 11 · 2 4 · 1 - 0 · ∫ d z z 2 + 1 = = z 4 (z 2 + 1) 2 + 3 8 z z 2 + 1 + 3 8 a r c t g (z) + C

После обратной замены z = x 2 - 1 получаем результат:
∫ d x x 5 x 2 - 1 = x 2 - 1 4 x 4 + 3 8 x 2 - 1 x 2 + 3 8 a r c t g x 2 - 1 + C

Ответ: ∫ d x x 5 x 2 - 1 = x 2 - 1 4 x 4 + 3 8 x 2 - 1 x 2 + 3 8 a r c t g x 2 - 1 + C

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Дробь называется правильной , если старшая степень числителя меньше старшей степени знаменателя. Интеграл правильной рациональной дроби имеет вид:

$$ \int \frac{mx+n}{ax^2+bx+c}dx $$

Формула на интегрирование рациональных дробей зависит от корней многочлена в знаменателе. Если многочлен $ ax^2+bx+c $ имеет:

  1. Только комплексные корни, то из него необходимо выделить полный квадрат: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{mx+n}{x^2 \pm a^2} $$
  2. Различные действительные корни $ x_1 $ и $ x_2 $, то нужно выполнить разложение интеграла и найти неопределенные коэффициенты $ A $ и $ B $: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{x-x_1} dx + \int \frac{B}{x-x_2} dx $$
  3. Один кратный корень $ x_1 $, то выполняем разложение интеграла и находим неопределенные коэффициенты $ A $ и $ B $ для такой формулы: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{(x-x_1)^2}dx + \int \frac{B}{x-x_1} dx $$

Если дробь является неправильной , то есть старшая степень в числителе больше либо равна старшей степени знаменателя, то сначала её нужно привести к правильному виду путём деления многочлена из числителя на многочлен из знаменателя. В данном случае формула интегрирования рациональной дроби имеет вид:

$$ \int \frac{P(x)}{ax^2+bx+c}dx = \int Q(x) dx + \int \frac{mx+n}{ax^2+bx+c}dx $$

Примеры решений

Пример 1
Найти интеграл рациональной дроби: $$ \int \frac{dx}{x^2-10x+16} $$
Решение

Дробь является правильной и многочлен имеет только комплексные корни. Поэтому выделим полный квадрат:

$$ \int \frac{dx}{x^2-10x+16} = \int \frac{dx}{x^2-2\cdot 5 x+ 5^2 - 9} = $$

Сворачиваем полный квадрат и подводим под знак дифференциала $ x-5 $:

$$ = \int \frac{dx}{(x-5)^2 - 9} = \int \frac{d(x-5)}{(x-5)^2-9} = $$

Пользуясь таблицей интегралов получаем:

$$ = \frac{1}{2 \cdot 3} \ln \bigg | \frac{x-5 - 3}{x-5 + 3} \bigg | + C = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \frac{dx}{x^2-10x+16} = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$
Пример 2
Выполнить интегрирование рациональных дробей: $$ \int \frac{x+2}{x^2+5x-6} dx $$
Решение

Решим квадратное уравнение: $$ x^2+5x-6 = 0 $$

$$ x_{12} = \frac{-5\pm \sqrt{25-4\cdot 1 \cdot (-6)}}{2} = \frac{-5 \pm 7}{2} $$

Записываем корни:

$$ x_1 = \frac{-5-7}{2} = -6; x_2 = \frac{-5+7}{2} = 1 $$

С учётом полученных корней, преобразуем интеграл:

$$ \int \frac{x+2}{x^2+5x-6} dx = \int \frac{x+2}{(x-1)(x+6)} dx = $$

Выполняем разложение рациональной дроби:

$$ \frac{x+2}{(x-1)(x+6)} = \frac{A}{x-1} + \frac{B}{x+6} = \frac{A(x-6)+B(x-1)}{(x-1)(x+6)} $$

Приравниваем числители и находим коэффициенты $ A $ и $ B $:

$$ A(x+6)+B(x-1)=x+2 $$

$$ Ax + 6A + Bx - B = x + 2 $$

$$ \begin{cases} A + B = 1 \\ 6A - B = 2 \end{cases} $$

$$ \begin{cases} A = \frac{3}{7} \\ B = \frac{4}{7} \end{cases} $$

Подставляем в интеграл найденные коэффициенты и решаем его:

$$ \int \frac{x+2}{(x-1)(x+6)}dx = \int \frac{\frac{3}{7}}{x-1} dx + \int \frac{\frac{4}{7}}{x+6} dx = $$

$$ = \frac{3}{7} \int \frac{dx}{x-1} + \frac{4}{7} \int \frac{dx}{x+6} = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Ответ
$$ \int \frac{x+2}{x^2+5x-6} dx = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Рассмотрены примеры интегрирования рациональных функций (дробей) с подробными решениями.

Содержание

См. также: Корни квадратного уравнения

Здесь мы приводим подробные решения трех примеров интегрирования следующих рациональных дробей:
, , .

Пример 1

Вычислить интеграл:
.

Здесь под знаком интеграла стоит рациональная функция, поскольку подынтегральное выражение является дробью из многочленов. Степень многочлена знаменателя (3 ) меньше степени многочлена числителя (4 ). Поэтому, вначале необходимо выделить целую часть дроби.

1. Выделим целую часть дроби. Делим x 4 на x 3 - 6 x 2 + 11 x - 6 :


Отсюда
.

2. Разложим знаменатель дроби на множители. Для этого нужно решить кубическое уравнение:
.
6
1, 2, 3, 6, -1, -2, -3, -6 .
Подставим x = 1 :
.

1 . Делим на x - 1 :

Отсюда
.
Решаем квадратное уравнение .
.
Корни уравнения: , .
Тогда
.

3. Разложим дробь на простейшие.

.

Итак, мы нашли:
.
Интегрируем.

Пример 2

Вычислить интеграл:
.

Здесь в числителе дроби - многочлен нулевой степени (1 = x 0 ). В знаменателе - многочлен третьей степени. Поскольку 0 < 3 , то дробь правильная. Разложим ее на простейшие дроби.

1. Разложим знаменатель дроби на множители. Для этого нужно решить уравнение третьей степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 3 (члена без x ). То есть целый корень может быть одним из чисел:
1, 3, -1, -3 .
Подставим x = 1 :
.

Итак, мы нашли один корень x = 1 . Делим x 3 + 2 x - 3 на x - 1 :

Итак,
.

Решаем квадратное уравнение:
x 2 + x + 3 = 0 .
Находим дискриминант: D = 1 2 - 4·3 = -11 . Поскольку D < 0 , то уравнение не имеет действительных корней. Таким образом, мы получили разложение знаменателя на множители:
.

2.
.
(x - 1)(x 2 + x + 3) :
(2.1) .
Подставим x = 1 . Тогда x - 1 = 0 ,
.

Подставим в (2.1) x = 0 :
1 = 3 A - C ;
.

Приравняем в (2.1) коэффициенты при x 2 :
;
0 = A + B ;
.


.

3. Интегрируем.
(2.2) .
Для вычисления второго интеграла, выделим в числителе производную знаменателя и приведем знаменатель к сумме квадратов.

;
;
.

Вычисляем I 2 .


.
Поскольку уравнение x 2 + x + 3 = 0 не имеет действительных корней, то x 2 + x + 3 > 0 . Поэтому знак модуля можно опустить.

Поставляем в (2.2) :
.

Пример 3

Вычислить интеграл:
.

Здесь под знаком интеграла стоит дробь из многочленов. Поэтому подынтегральное выражение является рациональной функцией. Степень многочлена в числителе равна 3 . Степень многочлена знаменателя дроби равна 4 . Поскольку 3 < 4 , то дробь правильная. Поэтому ее можно раскладывать на простейшие дроби. Но для этого нужно разложить знаменатель на множители.

1. Разложим знаменатель дроби на множители. Для этого нужно решить уравнение четвертой степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли один корень x = -1 . Делим на x - (-1) = x + 1 :


Итак,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то мы получили разложение знаменателя на множители:
.

2. Разложим дробь на простейшие. Ищем разложение в виде:
.
Освобождаемся от знаменателя дроби, умножаем на (x + 1) 2 (x 2 + 2) :
(3.1) .
Подставим x = -1 . Тогда x + 1 = 0 ,
.

Продифференцируем (3.1) :

;

.
Подставим x = -1 и учтем, что x + 1 = 0 :
;
; .

Подставим в (3.1) x = 0 :
0 = 2 A + 2 B + D ;
.

Приравняем в (3.1) коэффициенты при x 3 :
;
1 = B + C ;
.

Итак, мы нашли разложение на простейшие дроби:
.

3. Интегрируем.


.

См. также:

Приводится вывод формул для вычисления интегралов от простейших, элементарных, дробей четырех типов. Более сложные интегралы, от дробей четвертого типа, вычисляются с помощью формулы приведения. Рассмотрен пример интегрирования дроби четвертого типа.

Содержание

См. также: Таблица неопределенных интегралов
Методы вычисления неопределенных интегралов

Как известно, любую рациональную функцию от некоторой переменной x можно разложить на многочлен и простейшие, элементарные, дроби. Имеется четыре типа простейших дробей:
1) ;
2) ;
3) ;
4) .
Здесь a, A, B, b, c - действительные числа. Уравнение x 2 + bx + c = 0 не имеет действительных корней.

Интегрирование дробей первых двух типов

Интегрирование первых двух дробей выполняется с помощью следующих формул из таблицы интегралов :
,
, n ≠ - 1 .

1. Интегрирование дроби первого типа

Дробь первого типа подстановкой t = x - a приводится к табличному интегралу:
.

2. Интегрирование дроби второго типа

Дробь второго типа приводится к табличному интегралу той же подстановкой t = x - a :

.

3. Интегрирование дроби третьего типа

Рассмотрим интеграл от дроби третьего типа:
.
Будем вычислять его в два приема.

3.1. Шаг 1. Выделим в числителе производную знаменателя

Выделим в числителе дроби производную от знаменателя. Обозначим: u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
;
.
Но
.
Мы опустили знак модуля, поскольку .

Тогда:
,
где
.

3.2. Шаг 2. Вычисляем интеграл с A = 0, B=1

Теперь вычисляем оставшийся интеграл:
.

Приводим знаменатель дроби к сумме квадратов:
,
где .
Мы считаем, что уравнение x 2 + bx + c = 0 не имеет корней. Поэтому .

Сделаем подстановку
,
.
.

Итак,
.

Тем самым мы нашли интеграл от дроби третьего типа:

,
где .

4. Интегрирование дроби четвертого типа

И наконец, рассмотрим интеграл от дроби четвертого типа:
.
Вычисляем его в три приема.

4.1) Выделяем в числителе производную знаменателя:
.

4.2) Вычисляем интеграл
.

4.3) Вычисляем интегралы
,
используя формулу приведения:
.

4.1. Шаг 1. Выделение в числителе производной знаменателя

Выделим в числителе производную знаменателя, как мы это делали в . Обозначим u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
.

.
Но
.

Окончательно имеем:
.

4.2. Шаг 2. Вычисление интеграла с n = 1

Вычисляем интеграл
.
Его вычисление изложено в .

4.3. Шаг 3. Вывод формулы приведения

Теперь рассмотрим интеграл
.

Приводим квадратный трехчлен к сумме квадратов:
.
Здесь .
Делаем подстановку.
.
.

Выполняем преобразования и интегрируем по частям.




.

Умножим на 2(n - 1) :
.
Возвращаемся к x и I n .
,
;
;
.

Итак, для I n мы получили формулу приведения:
.
Последовательно применяя эту формулу, мы сведем интеграл I n к I 1 .

Пример

Вычислить интеграл

1. Выделим в числителе производную знаменателя.
;
;


.
Здесь
.

2. Вычисляем интеграл от самой простой дроби.

.

3. Применяем формулу приведения:

для интеграла .
В нашем случае b = 1 , c = 1 , 4 c - b 2 = 3 . Выписываем эту формулу для n = 2 и n = 3 :
;
.
Отсюда

.

Окончательно имеем:

.
Находим коэффициент при .
.

См. также:

Похожие статьи