Раздел качество электрической энергии. Требования к надежности электроснабжения и качеству электроэнергии. Способы и средства улучшения качества электрической энергии

Согласно ГОСТ 23875-88 под качеством электрической энергии понимается степень соответствия параметров электрической энергии их установленным значениям.

Под параметром понимается величина, количественно характеризующая какое-либо свойство электрической энергии (например, напряжение, частоту, форму кривой напряжения и др.).

Разность между текущим значением параметра электрической энергии и его номинальным или базовым значениями называется отклонением параметра электрической энергии. В качестве базового значения параметра могут быть приняты среднее рабочее, расчетное, предельное или обусловленное договором на электроснабжение.

Установившееся отклонение напряжения (частоты) - это отклонение напряжения (частоты) в установившемся режиме работы системы электроснабжения.

Отклонение напряжения оценивается в процентах

Колебания напряжения – серия единичных изменений напряжения во времени. Колебания напряжения характеризуются размахом изменения напряжения и дозой фликера.

Размахом колебания напряжения называют величину, равную разности между наибольшим и наименьшим значениями напряжения за определенный интервал времени в установившемся режиме работы источника, преобразователя электрической энергии или системы электроснабжения

Фликер - субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети.

Доза фликера – мера восприимчивости человека к воздействию фликера за установленный промежуток времени.

Под перенапряжением в системе электроснабжения понимается превышение напряжения над наибольшим рабочим напряжением, установленным для данного электрооборудования . Под временным перенапряжением понимается повышение напряжения в точке электрической сети выше 1,1U H OM , продолжительностью более 10 мc, возникающее в системах электроснабжения при коммутациях

и коротких замыканиях .

Импульс напряжения – резкое изменение напряжения в точке электрической сети с последующим восстановлением до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд.

Провал напряжения означает внезапное значительное снижение напряжения (ниже 0,9U НОМ) в системе электроснабжения с последующим его восстановлением через промежуток времени от десяти миллисекунд до нескольких десятков секунд.

Согласно ГОСТ 13109-97 нормально допускаемые и предельно допускаемые значения установившегося отклонения напряжения на выводах приемников электрической энергии равны соответственно +5 % и +10 % от номинального напряжения электрической сети.

Пределы допускаемых размахов напряжений зависят от частоты повторения колебаний напряжений за минуту и для колебаний напряжений, имеющих форму меандра, изменяются от долей процента до 10 % от номинального.

Нормально допускаемые и предельно допускаемые значения отклонения частоты равны соответственно +0,2 и +0,4 Гц.

Провал напряжения характеризуется показателем длительности провала напряжения. Предельно допускаемое значение длительности провала напряжения в электрических сетях напряжения до 20 кВ включительно равно 30 с.

Рис. 3.1 иллюстрирует некоторые из приведенных определений.

Искажение формы кривой переменного напряжения (тока)  отличие формы кривой переменного напряжения (тока) от требуемой.

Коэффициент формы кривой переменного напряжения (тока)  величина, равная отношению действующего значения периодического напряжения (тока) к его среднему значению (за полпериода).

Для синусоиды
.

Коэффициент амплитуды кривой переменного напряжения (тока) - величина, равная отношению максимального по модулю за период значения напряжения (тока) к действующему значению периодического напряжения (тока). (Для синусоиды
).

Коэффициент искажения синусоидальности кривой напряжения (тока) - один из основных показателей качества электроэнергии, равный отношению действующего значения суммы высших гармонических составляющих к действующему значению основной составляющей переменного напряжения (тока):

% ,

где n - порядковый номер гармонической составляющей напряжения. Вторым показателем несинусоидальности является коэффициент n -й гармонической составляющей напряжения:

, %.

Нормально допускаемые и предельно допускаемые значения коэффициента искажения синусоидальности кривой напряжения составляют соответственно в точках присоединения к электрическим сетям:

с U НОМ = 0,38 кВ  8 и 12 %, с U НОМ = 6 -20 кВ  5 и 8 %, с U НОМ = 35 кВ  4 и 6 %, с U НОМ = 110 - 330 кВ 2 и 3 %. .

Для характеристики несимметрии напряжений служат коэффициенты несимметрии по обратной и нулевой последовательностям.

Коэффициент несимметрии по обратной последовательности дается для междуфазных напряжений, геометрическая сумма которых всегда равна нулю. Он равен отношению, %,

, % ,

где U 2 , U 1 - составляющие обратной и прямой последовательностей при разложении по методу симметричных составляющих системы междуфазных напряжений.

Коэффициент несимметрии по нулевой последовательности определяется в виде

, % .

Он равен процентному отношению составляющих нулевой и прямой последовательностей при разложении по методу симметричных составляющих системы фазных напряжений. Причем известно, что соотношение U 1 и U 1 Ф для связанных систем фазных и междуфазных напряжений имеет простой вид:

U 1 =
U 1 Ф .

Нормально допускаемые и предельно допускаемые значения коэффициента несимметрии напряжений по обратной последовательности в точках общего присоединения к электрическим сетям равны соответственно 2 и 4 %.

Нормально допускаемые и предельно допускаемые значения коэффициента несимметрии по нулевой последовательности в точках общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ равны соответственно 2 и 4 %.

Составляющие прямой и нулевой последовательностей могут быть введены с помощью линейного преобразования на основе матричного уравнения:

,

где
,

;
; а 3 = 1;

а 4 = а ; 1+ а + а 2 = 0.

Здесь
и
условное обозначение столбцовых векторов фазных напряжений и напряжений, входящих в симметричные системы нулевой, прямой и обратной последовательностей, т. е.

= =
.

Это означает, что системы фазных величин могут быть составлены из систем нулевой (,,), прямой как совпадающей с основным порядком чередования фаз (, а 2 , а ) и обратной последовательностей (, а , а 2 ).

В качестве основного принято чередование фаз, показанное на рис. 3.2. Стрелка указывает, что следом за достижением положительного максимума напряжения в фазе А должен наступать положительный максимум в фазе В, а затем уже в фазе С. Порядок расположения фазных напряжений в столбцовом векторе фазных напряжений отвечает основному порядку чередования фаз.

РАЗДЕЛ 9. Качество электроэнергии

ЗАЗЕМЛЕНИЕ ЭКРАНОВ КАБЕЛЕЙ

Соединения экранов кабелей в виде «косички» не может быть рекомендовано для обеспечения ЭМС кабельных линий, за исключением низкочастотных приложений, в любом случае длина «косички» не должна превышать 30 мм. Для заземления экранов КЛ рекомендуется применять специальные зажимы или разъемы.

Основное правило –экраны контрольных и силовых кабелей следует заземлять с обоих концов. Это снижает синфазные помехи. Частные случаи – двойное экранирование кабелей, заземление через емкость или устройство защиты от перенапряжений. За счет применения конденсаторов достигается ослабление связи между токами низкой и высокой частоты.

Применение витых пар существенно снижает наведенные помехи;

Коаксиальные кабели, несмотря на их использование для передачи высокочастотных сигналов, не очень хороши для частот ниже средних;

Экраны в виде оплетки по наружной поверхности кабеля по электрическим параметрам превосходят экраны в виде спирально намотанной фольги;

Оплетка и фольга тем лучше, чем толще проволока или материал фольги;

Продольная установка фольги лучше, чем спиральная, но она трудно изгибается;

Внешний экран в виде оплетки и фольги или двойной оплетки, значительно лучше, чем одиночный экран;

Отдельные витые пары в общем экранированном кабеле могут нуждаться в индивидуальных экранах для предотвращения емкостной помехи между сигнальными проводниками;

Многослойные экраны с изоляцией между экранными слоями лучше, чем без изоляции.

Выводы по разделу

Проектные решения по обеспечению ЭМС подстанций высокого напряжения включают: проработку компоновочных решений, проектирование заземляющего устройства ПС, разработку кабельной канализации и системы молниезащиты, проектирование системы оперативного постоянного тока и системы электропитания переменным током.

Показатели качества электрической энергии (ПКЭ), методы их оценки и нормы определяет Межгосударственный стандарт: «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» ГОСТ 54149-2010.

Нормы КЭ, устанавливаемые настоящим стандартом, являются уровнями электромагнитной совместимости для кондуктивных электромагнитных помех в системах электроснабжения общего назначения. При соблюдении указанных норм обеспечивается электромагнитная совместимость электрических сетей электроснабжения общего назначения и электрических сетей потребителей электрической электроэнергии (приемников электрической электроэнергии).

Нормы, установленные настоящим стандартом, подлежат включению в технические условия на присоединения потребителей электрической энергии и в договоры на пользование электрической энергией между электроснабжающими организациями и потребителями электрической энергии.

Помимо требований ЭМС в связи с выходом постановления правительства РФ №1013 от 13.08.1997 г. о включении электрической энергии в перечень товаров, подлежащих обязательной сертификации, КЭ должно соблюдаться также с точки зрения Закона РФ «О защите прав потребителей». В свете данного постановления правительства было принято совместное решение Госстандарта России и Минтопэнерго РФ «О порядке введения обязательной сертификации электрической энергии» от 03.03.1998 г., а также введен «Временный порядок сертификации электрической энергии».

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ УКРАИНЫ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Научно-исследовательская работа

по теме: «Качество электроэнергии»

Выполнила ст.гр. ________________________ дата подпись Проверил ________________________ дата подпись

Донецк, 2011

Данная работа содержит: 27 стр., 7 рис., 1 табл., 6 ист. Объектом исследовательской работы является: качество электроэнергии в системах электроснабжения Украины. Цель работы: ознакомится с факторами, влияющими на качество электроэнергии, способами его регулирования; выяснить, как осуществляется автоматическое регулирование качества электроэнергии; определить, как качество электроэнергии отразится на ее стоимости. В работе исследованы системы электроснабжения и электропотребления различного исполнения, выявлены основные проблемы этих систем, которые могут привести к снижению качества электроэнергии. ЭЛЕКТРОЭНЕРГИЯ, КАЧЕСТВО ЭЛЕКТРОЭНЕРГИИ, НЕСИММЕТРИЯ НАПРЯЖЕНИЙ, ПЕРЕНАПРЯЖЕНИЯ, АВТОМАТИЗИРОВАННОЕ УПРАВЛЕНИЕ, ЭЛЕКТРИЧЕСКАЯ СИСТЕМА.

1. Показатели качества электроэнергии…………………………………………4 1.1 Отклонение напряжения…………………………………………………6 1.2 Колебания напряжения………………………………………………….8 1.2.1 Влияние колебаний напряжения на работу электрооборудования………………………………………………………...8 1.2.2 Мероприятия по снижению колебаний напряжения…………….9 1.3 Несимметрия напряжений………………………………………………10 1.3.1 Влияние несимметрии напряжений на работу электрооборудования………………………………………………………11 1.3.2 Мероприятия по снижению несимметрии напряжений…………12 1.4 Несинусоидальность напряжения……………………………………..12 1.4.1 Влияние несинусоидальности напряжения на работу электрооборудования……………………………………………………….13 1.4.2 Мероприятия по снижению несинусоидальности напряжения..14 1.5 Отклонение частоты…………………………………………………….15 1.6 Временное перенапряжение……………………………………………15 1.7 Импульсное перенапряжение……………………………………........16 2. Автоматизированное управление качеством электроэнергии…………..16 2.1 Основные требования к моделям электрических систем, содержащим распределенные смешанные источники искажения напряжения…………..17 2.2 Методика определения фактического влияния потребителя на КЭ...19 3. Расчеты за электроэнергию в зависимости от ее качества……………….22 Литература……………………………………………………………………...26

1 ПОКАЗАТЕЛИ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ

Электроприборы и оборудование предназначены для работы в определённой электромагнитной среде. Электромагнитной средой принято считать систему электроснабжения и присоединенные к ней электрические аппараты и оборудование, связанные индуктивно и создающие в той или иной мере помехи, отрицательно влияющие на работу друг друга. При возможности нормальной работы оборудования в существующей электромагнитной среде, говорят об электромагнитной совместимости технических средств. Единые требования к электромагнитной среде закрепляют стандартами, что позволяет создавать оборудование и гарантировать его работоспособность в условиях соответствующих этим требованиям. Стандарты устанавливают допустимые уровни помех в электрической сети, которые характеризуют качество электроэнергии и называются показателями качества электроэнергии (ПКЭ). С эволюционным изменением техники изменяются и требования к электромагнитной обстановке, естественно в сторону ужесточения. Так наш стандарт на качество электроэнергии, ГОСТ 13109 от 1967 года, с развитием полупроводниковой техники был пересмотрен в 1987 году, а с развитием микропроцессорной техники пересмотрен в 1997 году. Показатели качества электрической энергии, методы их оценки и нормы определяет Межгосударственный стандарт: «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» ГОСТ 13109-97. Таблица 1.1 – Нормирование показателей качества электроэнергии

Наименование ПКЭ

Наиболее вероятная причина

Отклонение напряжения

установившееся отклонение напряжения

график нагрузки потребителя

Колебания напряжения

размах изменения напряжения

потребитель с резкопеременной нагрузкой

доза фликера

Несимметрия напряжений в трёхфазной системе

коэффициент несимметрии напряжений по обратной последовательности

потребитель с несимметричной нагрузкой

коэффициент несимметрии напряжений по нулевой последовательности

Несинусоидальность формы кривой напряжения

коэффициент искажения синусоидальности кривой напряжения

потребитель с нелинейной нагрузкой

коэффициент n-ой гармонической составляющей напряжения

отклонение частоты

особенности работы сети, климатические условия или природные явления

длительность провала напряжения

импульсное напряжение

коэффициент временного перенапряжения

Большинство явлений, происходящих в электрических сетях и ухудшающих качество электрической энергии, происходят в связи с особенностями совместной работы электроприёмников и электрической сети. Семь ПКЭ в основном обусловлены потерями (падением) напряжения на участке электрической сети, от которой питаются соседние потребители. Потери напряжения на участке электрической сети (k) определяются выражением: ΔU k = (P k ·R k + Q k ·X k) / U ном Здесь активное (R) и реактивное (X) сопротивление k-го участка сети, практически постоянны, а активная (P) и реактивная (Q) мощность, протекающие по k-му участкусети - переменны, и характер этих изменений влияет на формирование электромагнитных помех:
    При медленном изменении нагрузки в соответствии с её графиком - отклонение напряжения;При резкопеременном характере нагрузки - колебания напряжения;При несимметричном распределении нагрузки по фазам электрической сети -несимметрия напряжений в трёхфазной системе;При нелинейной нагрузке - несинусоидальность формы кривой напряжения.
В отношении этих явлений потребители электрической энергии имеют возможность тем или иным образом влиять на её качество. Всё прочее, ухудшающее качество электрической энергии, зависит от особенностей работы сети, климатических условий или природных явлений. Поэтому, возможности влиять на это потребитель электрической энергии не имеет, он может только защищать своё оборудование специальными средствами, например, устройствами быстродействующих защит или устройствами гарантированного питания (UPS). 1.1 Отклонение напряжения. Отклонение напряжения - отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения. Отклонение напряжения в той или иной точке сети происходит под воздействием изменения нагрузки в соответствии с её графиком.

Влияние отклонения напряжения на работу электрооборудования:

    Технологические установки:
    При снижении напряжения существенно ухудшается технологический процесс, увеличивается его длительность. Следовательно, увеличивается себестоимость производства.При повышении напряжения снижается срок службы оборудования, повышается вероятность аварий.При значительных отклонениях напряжения происходит срыв технологического процесса.
    Освещение:
    Снижается срок службы ламп освещения, так при величине напряжения 1,1·U ном срок службы ламп накаливания снижается в 4 раза.При величине напряжения 0,9·U ном снижается световой поток ламп накаливания на 40 % и люминесцентных ламп на 15 %.При величине напряжения менее 0,9·U ном люминесцентные лампы мерцают, а при 0,8·U ном просто не загораются.
    Электропривод:
    При снижении напряжения на зажимах асинхронного электродвигателя на 15 % момент снижается на 25 %. Двигатель может не запуститься или остановиться.
    При снижении напряжения увеличивается потребляемый от сети ток, что влечёт разогрев обмоток и снижение срока службы двигателя. При длительной работе на напряжении 0,9·U ном срок службы двигателя снижается вдвое.При повышении напряжения на 1 % потребляемая двигателем реактивная мощность увеличивается на 3...7 %. Снижается эффективность работы привода и сети.
Обобщённый узел нагрузки электрических сетей (нагрузка в среднем) составляет:
- 10 % специфической нагрузки (например, в Москве это метро - ~ 11 %);
-30 % освещение и прочее;
- 60 % асинхронные электродвигатели. Поэтому, ГОСТ 13109-97 устанавливает нормально и предельно допустимые значения установившегося отклонения напряжения на зажимах электроприёмников в пределах соответственно δUy нор = ± 5 % и δUy пред = ± 10 % номинального напряжения сети. Обеспечить эти требования можно двумя способами: снижением потерь напряжения и регулированием напряжения. ΔU = (P·R + Q·X) / U ЦП (ТП) Снижение потерь напряжения (ΔU) достигается:
    Выбором сечения проводников линий электропередач (≡ R) по условиям потерь напряжения.Применением продольной емкостной компенсации реактивного сопротивления линии (X). Однако, это опасно повышением токов короткого замыкания при X→0.Компенсацией реактивной мощности (Q) для снижения ее передачи по электросетям, с помощью конденсаторных установок и синхронных электродвигателей, работающих в режиме перевозбуждения.
Кроме снижения потерь напряжения, компенсация реактивной мощности является эффективным мероприятием энергосбережения , обеспечивающим снижение потерь электроэнергии в электрических сетях.

Регулирование напряженияU:

    В центре питания регулирование напряжения (U ЦП) осуществляется с помощью трансформаторов, оснащённых устройством автоматического регулирования коэффициента трансформации в зависимости от величины нагрузки - регулирование под нагрузкой (РПН). Такими устройствами оснащены ~ 10 % трансформаторов. Диапазон регулирования ± 16 % с дискретностью 1,78 %.Напряжение может регулироваться на промежуточных трансформаторных подстанциях (U ТП) с помощью трансформаторов, оснащённых устройством переключения отпаек на обмотках с различными коэффициентами трансформации - переключение без возбуждения (ПБВ), т.е. с отключением от сети. Диапазон регулирования ± 5 % с дискретностью 2,5 %.

Ответственность за поддержание напряжения в пределах, установленных ГОСТ 13109-97, возлагается на энергоснабжающую организацию.

Действительно, первый (R) и второй (X) способы выбираются при проектировании сети и не могут изменяться в дальнейшем. Третий (Q) и пятый (U ТП) способы хороши для регулирования при сезонном изменении нагрузки сети, но руководить режимами работы компенсирующего оборудования потребителей, необходимо централизовано, в зависимости от режима работы всей сети, то есть энергоснабжающей организации. Четвёртый способ - регулирование напряжения в центре питания (U ЦП), позволяет энергоснабжающей организации перативно регулировать напряжение в соответствии с графиком нагрузки сети. ГОСТ 13109-97 устанавливает допустимые значения установившегося отклонения напряжения на зажимах электроприёмника. А пределы изменения напряжения в точке присоединения потребителя должны рассчитываться с учетом падения напряжения от этой точки до электроприёмника и указываться в договоре энергоснабжения. 1.2 Колебания напряжения Колебания напряжения - быстро изменяющиеся отклонения напряжения длительностью от полупериода до нескольких секунд. Колебания напряжения происходят под воздействием быстро изменяющейся нагрузки сети. Источниками колебаний напряжения являются мощные электроприёмники с импульсным, резкопеременным характером потребления активной и реактивной мощности: дуговые и индукционные печи; электросварочные машины; электродвигатели при пуске.

В текстовой части проекта электроснабжения необходимо давать описание электроприемников с указанием требуемой для них категории электроснабжения и описанием мероприятий по обеспечению данной категории.

Требования к надежности электроснабжения.

Все потребители электрической энергии делятся на 3 категории надежности электроснабжения в соответствии с гл. 1.2 ПУЭ.

Первая категория - в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания. (см. также первая особая категория).

Данные категории электроснабжения определены в нормативных документах касаемо каждого отдельного вида оборудования или объекта (здания, сооружения, механизма). Техническими условиями, выданными сетевой организацией определяется категория электроснабжения, которую обеспечивает сетевая организация, со своей стороны. На основании локальных нормативных документов, в которых определена категория надежности конкретного вида электроприемника проводится сравнение. Если категория электроснабжения по ТУ ниже, чем требуется в нормативных документах, то необходимо предусмотреть мероприятия по обеспечению требуемой категории установкой дополнительных источников электрической энергии - аккумуляторных батарей, дизельных генераторов.

В связи с заменой ГОСТ 13109-97 на ГОСТ 32144-2013. Нормы качества электрической энергии в системах электроснабжения общего назначения и введением ГОСТ Р 50571.5.52-2011 (МЭК 60364-5-52:2009) Электроустановки низковольтные. Выбор и монтаж электрооборудования. изменились првычние для проектировщиков требования к потерям напряжения в электрических сетях, а так же к расчету потери напряжения.

Приведем пример пункта из Пояснительной записки:

Приборы пожарно-охранной сигнализации, система оповещения о пожаре, противопожарные устройства, ВЗУ, аварийное освещение отнесены к I категории. Обеспечивается устройством АВР, ИБП

Для обеспечения второй категории надежности на площадке карантинник используется однотрансформаторная подстанция с вводом в здание двух кабелей от ТП и ДГУ.

Электроприемники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания. В связи с этим в светильники аварийного освещения применяются с блоками аварийного питания. Так же блоки аварийного питания встраиваются в щиты управления микроклиматом и приборов ОПС и системы оповещения о пожаре.

Качество электроэнергии

Данный раздел проекта разработан на основании «Информационного письма –предписания ИП-22/99» и в соответствии с Законом Российской « О защите прав потребителей» (ст. 7) и постановлением Правительства России от 13 августа 1997 г. №1013 электрическая энергия является товаром и подлежит обязательной сертификации по показателям качества установленными ГОСТ 131-9-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».

Качество электроэнергии в соответствии с «Правилами проведения сертификации электрической энергии» должно отвечать 6 основным пунктам:

1- установившееся отклонение напряжения;
2- отклонение частоты;
3- коэффициент искажения синусоидальной формы кривой напряжения;
4- коэффициент n-ной гармонической составляющей напряжения;
5- коэффициент несимметрии напряжений по обратной последовательности;
6- коэффициент несимметрии напряжений по нулевой последовательности.

Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы:

Нормально допустимые и предельно допустимые значения установившегося отклонения напряжения на выводах приемников электрической энергии равны соответственно 5% и 10% от номинального напряжения электрической сети.

Нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергии между энергоснабжающей организацией и потребителем.

Отклонение частоты напряжения характеризуется показателем отклонения, для которого установлены следующие нормы:

Нормально допустимое и предельно допустимое значения отклонения частоты равны 0,2 и 0,4 Гц соответственно.

Коэффициент искажения синусоидальности кривой напряжения для нормального режима составляет для 0,38 кВ -8%, для 6-10 кВ -5%, предельно допустимые значения соответственно 12% и 8%.

Коэффициент п-ной гармонической составляющей напряжения в точках общего присоединения к электрическим сетям с разным номинальным напряжением приведены в таблице 2 ГОСТ 13109-97 .

Несимметрия напряжений характеризуется следующими показателями:

Коэффициентом несимметрии напряжений по обратной последовательности;
коэффициентом несимметрии напряжений по нулевой последовательности.

Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по обратной последовательности в точках общего присоединения к электрическим сетям равны 2,0 и 4,0% соответственно.



Похожие статьи