Атомное ядро: строение, масса, состав. Строение ядра атома Ядра с одинаковым числом нейтронов

Вопросы «Из чего состоит материя?», «Какова природа материи?» всегда занимали человечество. Еще с древнейших времен философы и ученые искали ответы на эти вопросы, создавая как реалистичные, так и совершенно удивительные и фантастические теории и гипотезы. Однако буквально столетие назад человечество подошло к разгадке этой тайны максимально близко, открыв атомарную структуру материи. Но каков состав ядра атома? Из чего все состоит?

От теории к реальности

К началу двадцатого века атомарная структура перестала быть только гипотезой, а стала абсолютным фактом. Оказалось, что состав ядра атома - понятие очень сложное. В его состав входят Но возник вопрос: состав атома и включают в себя разное количество этих зарядов или нет?

Планетарная модель

Изначально представляли, что атом построен очень похоже на нашу Солнечную систему. Однако довольно быстро оказалось, что подобное представление не совсем верно. Проблематика чисто механического переноса астрономического масштаба картины в область, которая занимает миллионные доли миллиметра, повлекла за собой существенное и резкое изменение свойств и качеств явлений. Главное различие заключалось в гораздо более жестких законах и правилах, по которым построен атом.

Недостатки планетарной модели

Во-первых, так как атомы одного рода и элемента по параметрам и свойствам должны быть совершенно одинаковы, то и орбиты у электронов этих атомов тоже должны быть одинаковы. Однако законы движения астрономических тел не смогли дать ответы на эти вопросы. Второе противоречие заключается в том, что движение электрона по орбите, если применить к нему хорошо изученные физические законы, должно обязательно сопровождаться перманентным выделением энергии. В результате этот процесс привел бы к истощению электрона, который в конечном итоге затухнул бы и даже упал на ядро.

Волновая структура материи

В 1924 году молодой аристократ Луи де Бройль выдвинул мысль, которая перевернула представления научного сообщества о таких вопросах как состав атомных ядер. Идея заключалась в том, что электрон - это не просто движущийся шарик, который вращается вокруг ядра. Это размытая субстанция, которая движется по законам, напоминающим распространение волн в пространстве. Довольно быстро это представление распространили и на движение любого тела в целом, пояснив, что мы замечаем только одну сторону этого самого движения, а вот вторая фактически не проявляется. Мы можем видеть распространение волн и не заметить движение частицы, либо же наоборот. На самом же деле обе эти стороны движения всегда существуют, и вращение электрона по орбите - это не только перемещение самого заряда, но также и распространение волн. Такой подход кардинально отличается от принятой ранее планетарной модели.

Элементарная основа

Ядро атома - это центр. Вокруг него и вращаются электроны. Свойствами именно ядра обусловлено все остальное. Говорить о таком понятии как состав ядра атома необходимо с самого важного момента - с заряда. В составе атома наблюдается определенное которые несут отрицательный заряд. Само же ядро обладает положительным зарядом. Из этого можно сделать определенные выводы:

  1. Ядро - это заряженная положительно частица.
  2. Вокруг ядра находится пульсирующая атмосфера, создаваемая зарядами.
  3. Именно ядро и его характеристики определяют количество электронов в атоме.

Свойства ядра

Медь, стекло, железо, дерево обладают одинаковыми электронами. Атом может потерять пару электронов или даже все. Если ядро остается заряжено положительно, то оно способно притянуть нужное количество отрицательно заряженных частиц из других тел, что позволит ему сохраниться. Если атом теряет некоторое количество электронов, то положительный заряд у ядра будет больше, чем остаток отрицательных зарядов. В этом случае и весь атом приобретет избыточный заряд, и его можно будет назвать положительным ионом. В некоторых случаях атом может привлечь большее количество электронов, и тогда он станет отрицательно заряженным. Следовательно, его можно будет назвать отрицательным ионом.

Сколько весит атом?

Масса атома в основном определяется ядром. Электроны, которые входят в состав атома и атомного ядра, весят мене одной тысячной от общей массы. Так как массу считают мерой запаса энергии, которым обладает вещество, то этот факт считается неимоверно важным при изучении такого вопроса, как состав ядра атома.

Радиоактивность

Наиболее сложные вопросы появились после открытия Радиоактивные элементы излучают альфа-, бета- и гамма-волны. Но такое излучение должно иметь источник. Резерфорд в 1902 году показал, что таким источником является сам атом, а точнее сказать, ядро. С другой стороны, радиоактивность - это не только испускание лучей, а и перевод одного элемента в другой, с совершенно новыми химическими и физическими свойствами. То есть радиоактивность - это изменение ядра.

Что мы знаем о ядерной структуре?

Почти сто лет назад физик Проут выдвинул мысль о том, что элементы в периодической системе не являются бессвязными формами, а представляют собой комбинации Поэтому можно было ожидать, что и заряды, и массы ядер будут выражаться через целые и кратные заряды самого водорода. Однако это не совсем так. Изучая свойства атомных ядер при помощи электромагнитных полей, физик Астон установил, что элементы, атомные веса у которых не являлись целыми и кратными, на самом деле - комбинация разных атомов, а не одно вещество. Во всех случаях, когда атомный вес не целое число, мы наблюдаем смесь разных изотопов. Что это такое? Если говорить про состав ядра атома, изотопы - атомы с одинаковыми зарядами, но с разными массами.

Эйнштейн и ядро атома

Теория относительности говорит, что масса - это не мера, по которой определяют количество материи, а мера энергии, которой обладает материя. Соответственно, материю можно измерить не массой, а зарядом, который составляет эту материю, и энергией заряда. Когда одинаковый заряд приближается к другому такому же, энергия будет увеличиваться, в обратном случае - уменьшаться. Это, несомненно, не означает изменение материи. Соответственно, с этой позиции ядро атома - это не источник энергии, а скорее, остаток после ее выделения. Значит, существует некое противоречие.

Нейтроны

Супруги Кюри при бомбардировке альфа-частицами бериллия открыли некие непонятные лучи, которые, сталкиваясь с ядром атома, отталкивают его с огромной силой. Однако они способны проходить сквозь большую толщину вещества. Это противоречие разрешилось тем, что данная частица оказалась с нейтральным электрическим зарядом. Соответственно, ее и назвали нейтроном. Благодаря дальнейшим исследованиям оказалось, что почти такая же, как и у протона. В общем-то говоря, нейтрон и протон невероятно похожи. С учетом этого открытия определенно можно было установить, что в состав ядра атома входят и протоны, и нейтроны, причем в одинаковых количествах. Все постепенно становилось на места. Число протонов - атомный номер. Атомный вес - это сумма масс нейтронов и протонов. Изотопом можно же назвать элемент, в котором количество нейтронов и протонов будет не равным друг другу. Как уже говорилось выше, в таком случае, хотя элемент остается фактическим тем же самым, его свойства могут существенно измениться.

Состав ядра атома

В 1932г. после открытия протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) предложили протонно-нейтронную модель атомного ядра .
Согласно этой модели ядро состоит из протонов и нейтронов. Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A : A = Z + N . Ядра химических элементов обозначают символом:
X – химический символ элемента.

Например, – водород,

Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze , где e – элементарный заряд. Число нейтронов обозначают символом N .

Ядерные силы

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными . Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов.

Ядерные силы обладают следующими свойствами:

  • обладают силами притяжения;
  • является силами короткодействующими (проявляются на малых расстояниях между нуклонами);
  • ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.

Дефект массы и энергия связи ядра атома

Важнейшую роль в ядерной физике играет понятие энергии связи ядра .

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Разность масс называется дефектом масс . По дефекту массы с помощью формулы Эйнштейна E = mc 2 можно определить энергию, выделившуюся при образовании данного ядра, т. е. энергию связи ядра E св:

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

Ядерная энергетика

В нашей стране была построена первая в мире атомная электростанция и запущена в 1954 году в СССР, в городе Обнинске. Развивается строительство мощных атомных электростанций. В настоящее время в России 10 действующих АЭС . После аварии на Чернобыльской АЭС приняты дополнительные меры по безопасности атомных реакторов.

Ядро атома состоит из нуклонов, которые подразделяются на протоны и нейтроны.

Символическое обозначение ядра атома:

А- число нуклонов, т.е. протонов + нейтронов (или атомная масса)
Z- число протонов (равно числу электронов)
N- число нейтронов (или атомный номер)

ЯДЕРНЫЕ СИЛЫ

Действуют между всеми нуклонами в ядре;
- силы притяжения;
- короткодействующие

Нуклоны притягиваются друг к другу ядерными силами, которые совершенно непохожи ни на гравитационные, ни на электростатические. . Ядерные силы очень быстро спадают с расстоянием. Радиус их действия порядка 0,000 000 000 000 001 метра.
Для этой сверхмалой длины, характеризующей размеры атомных ядер, ввели специальное обозначение - 1 Фм (в честь итальянского физика Э. Ферми, 1901-1954). Все ядра имеют размеры нескольких ферми. Радиус ядерных сил равен размеру нуклона, поэтому ядра - сгустки очень плотной материи. Возможно, самой плотной в земных условиях.
Ядерные силы - сильные взаимодействия. Они многократно превосходят кулоновскую силу (на одинаковом расстоянии). Короткодействие ограничивает действие ядерных сил. С ростом числа нуклонов ядра становятся неустойчивыми, и поэтому большинство тяжелых ядер радиоактивны, а совсем тяжелые вообще не могут существовать.
Конечное число элементов в природе - следствие короткодействия ядерных сил.



Строение атома - Класс!ная физика

Знаете ли вы?

В середине XX века теория ядра предсказала существование стабильных элементов с порядковыми номерами Z = =110 -114.
В Дубне был получен 114-й элемент с атомной массой А = 289, который "жил" всего 30 секунд, что невероятно долго для атома с ядром такого размера.
Сегодня теоретики уже обсуждают свойства сверхтяжелых ядер массой 300 и даже 500.

Атомы с одинаковыми атомными номерами называют изотопами: в таблице Менделеева
они расположены в одной клеточке (по-гречески изос - равный, топос - место).
Химические свойства изотопов почти тождественны.
Если элементов всего в природе - около 100, то изотопов - более 2000. Многие из них неустойчивы, то есть радиоактивны, и распадаются, испуская различные виды излучений.
Изотопы одного и того же элемента по составу отличаются лишь количеством нейтронов в ядре.


Изотопы водорода.

Если удалить пространство из всех атомов человеческого тела, то то, что останется, сможет пролезть в игольное ушко.


Любознательным

«Глиссирующие» автомобили

Если, двигаясь на автомобиле по мокрой дороге с большой скоростью, резко затормозить, то автомобиль поведет себя как глиссер; шины его начнут скользить по тонкой пленке воды, практически не касаясь дороги. Почему это происходит? Почему автомобиль не всегда скользит на мокрой дороге, даже если тормоз не нажат? Существует ли такой рисунок протектора, который уменьшает этот эффект?

Оказывается...
Предлагалось несколько рисунков протектора, уменьшающего вероятность «аквапланирования». Например, канавка может отводить воду к задней точке контакта протектора с дорогой, откуда вода будет выбрасываться наружу. По другим, более мелким канавкам вода может отводиться в стороны. Наконец, небольшие углубления на протекторе могут как бы «промокать» водяной слой на дороге, прикасаясь к нему непосредственно перед зоной основного контакта протектора с дорожным покрытием. Во всех случаях задача состоит в том, чтобы как можно скорее убрать воду из зоны контакта и не допустить аквапланирования.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Задолго до появления достоверных данных о внутреннем устройстве всего сущего греческие мыслители представляли себе материю в виде мельчайших огненных частиц, которые находились в постоянном движении. Вероятно, это видение мирового устройства вещей было выведено из чисто логических умозаключений. Несмотря на некоторую наивность и абсолютную бездоказательность этого утверждения, оно оказалось верным. Хотя подтвердить смелую догадку ученые смогли лишь двадцать три века спустя.

Строение атомов

В конце XIX века были исследованы свойства разрядной трубки, через которую пропущен ток. Наблюдения показали, что при этом испускается два потока частиц:

Отрицательные частицы катодных лучей были названы электронами. В дальнейшем частицы с тем же отношением заряда к массе были обнаружены во многих процессах. Электроны казались универсальными составляющими различных атомов, довольно легко отделяющимися при бомбардировке ионов и атомов.

Частички, несущие положительный заряд, представлялись осколками атомов после потери ими одного или нескольких электронов. На самом деле положительные лучи представляли собой группы атомов, лишенных отрицательных частиц, и вследствие этого имеющих положительный заряд.

Модель Томпсона

На основании опытов было выяснено, что положительные и отрицательные частички представляли суть атома, были его составляющими. Английский ученый Дж. Томсон предложил свою теорию. По его мнению, строение атома и атомного ядра представляли собой некую массу, в которой отрицательные заряды были втиснуты в положительно заряженный шар, как изюм в кекс. Компенсация зарядов делала «кекс» электрически нейтральным.

Модель Резерфорда

Молодой американский ученый Резерфорд, анализируя треки, оставшиеся после альфа-частиц, пришел к выводу, что модель Томпсона несовершенна. Некоторые альфа-частицы отклонялись на небольшие углы - в 5-10 o . В редких случаях альфа-частицы отклонялись на большие углы в 60-80 o , а в исключительных случаях углы были очень большими - 120-150 o . Модель атома Томпсона не могла объяснить такую разницу.

Резерфорд предлагает новую модель, объясняющую строение атома и атомного ядра. Физика процессов утверждает, что атом должен быть пуст на 99%, с крошечным ядром и вращающимися вокруг него электронами, которые движутся по орбитам.

Отклонения при ударах он объясняет тем, что частицы атома имеют собственные электрические заряды. Под воздействием бомбардирующих заряженных частиц атомные элементы ведут себя как обыкновенные заряженные тела в макромире: частицы с одинаковыми зарядами отталкиваются друг от друга, а с противоположными - притягиваются.

Состояние атомов

В начале прошлого века, когда были запущены первые ускорители элементарных частиц, все теории, объяснявшие строение атомного ядра и самого атома, ждали экспериментальной проверки. К тому времени были уже досконально изучены взаимодействия альфа- и бета-лучей с атомами. Вплоть до 1917 года считалось, что атомы либо стабильны, либо радиоактивны. Стабильные атомы нельзя расщепить, распад радиоактивных ядер невозможно контролировать. Но Резерфорду удалось опровергнуть это мнение.

Первый протон

В 1911 году Э. Резерфорд выдвинул идею о том, что все ядра состоят из одинаковых элементов, основой для которых является атом водорода. На эту идею ученого натолкнул важный вывод предыдущих изучений строения вещества: массы всех химических элементов делятся без остатка на массу водорода. Новое предположение открывало невиданные возможности, позволяющие по-новому видеть строение атомного ядра. Ядерные реакции должны были подтвердить или опровергнуть новую гипотезу.

Опыты проводились в 1919 году с атомами азота. Бомбардируя их альфа-частицами, Резерфорд добился удивительного результата.

Атом N поглотил альфа-частицу, превратился после этого в атом кислорода О 17 и испустил ядро водорода. Это стало первым искусственным превращением атома одного элемента в другой. Подобный опыт вселял надежду на то, что строение атомного ядра, физика существующих процессов позволяют осуществлять и другие ядерные превращения.

Ученый использовал в своих опытах метод сцинтилляции - вспышки. По частоте вспышек он делал выводы о том, каким является состав и строение атомного ядра, о характеристиках рожденных частиц, об их атомной массе и порядковом номере. Неизвестная частица было названа Резерфордом протоном. Она имела все характеристики атома водорода, лишенного своего единственного электрона - одиночный положительный заряд и соответствующую массу. Таким образом было доказано, что протон и ядро водорода являются одними и теми же частицами.

В 1930 году, когда были построены и запущены первые большие ускорители, модель атома Резерфорда удалось проверить и доказать: каждый атом водорода состоит из одинокого электрона, положение которого невозможно определить, и рыхлого атома с одиноким положительным протоном внутри. Поскольку при бомбардировке из атома могут влетать протоны, электроны и альфа-частицы, ученые думали, что они и есть составляющие любого ядра атома. Но подобная модель атома ядра казалась неустойчивой - электроны были слишком велики для того, чтобы умещаться в ядре, кроме этого, существовали серьезные затруднения, связанные с нарушением закона количества движения и сохранения энергии. Эти два закона, как строгие бухгалтеры, говорили о том, что количество движения и масса при бомбардировке исчезают в неизвестном направлении. Поскольку эти законы являлись общепринятыми, следовало отыскать объяснения для подобной утечки.

Нейтроны

Ученые всего мира ставили эксперименты, направленные на открытие новых составляющих ядер атомов. В 1930-х годах немецкие физики Беккер и Боте бомбардировали атомы бериллия альфа-частицами. При этом было зарегистрировано неизвестное излучение, которое было решено назвать G-лучами. Подробные исследования рассказали о некоторых особенностях новых лучей: они могла распространяться строго по прямой, не взаимодействовали с электрическими и магнитными полями, обладали высокой проникающей способностью. Позднее частицы, образующие этот вид излучения, были найдены при взаимодействии альфа-частиц с другими элементами - бором, хромом и прочими.

Гипотеза Чедвика

Тогда Джеймс Чедвик, коллега и ученик Резерфорда, в журнале «Нэйчур» дал короткое сообщение, которое позднее стало общеизвестным. Чедвик обратил внимание на тот факт, что противоречия в законах сохранения легко разрешаемы, если допустить, что новое излучение является потоком нейтральных частиц, каждая из которых имеет массу, приблизительно равную массе протона. Рассматривая это предположение, физики существенно дополнили гипотезу, объясняющую строение атомного ядра. Кратко суть дополнений сводилась к новой частице и ее роли в строении атома.

Свойства нейтрона

Обнаруженной частице было дано имя «нейтрон». Новооткрытые частички не образовывали вокруг себя электромагнитных полей, легко проходили через вещество, не теряя при этом энергии. При редких столкновениях с легкими ядрами атомов нейтрон в состоянии выбить из атома ядро, теряя при этом значительную часть своей энергии. Строение атомного ядра предполагало наличие различного количества нейтронов в каждом веществе. Атомы с одинаковым зарядом ядра, но с различным количеством нейтронов получили название изотопов.

Нейтроны послужили отличной заменой альфа-частицам. В настоящее время именно их используют для того, чтобы изучить строение атомного ядра. Кратко их значение для науки описать невозможно, но именно благодаря бомбардировке нейтронами атомных ядер физики смогли получить изотопы практически всех известных элементов.

Состав ядра атома

В настоящее время строение атомного ядра представляет собой совокупность протонов и нейтронов, скрепленных между собой ядерными силами. Например, ядро гелия представляет собой комочек из двух нейтронов и двух протонов. Легкие элементы имеют практически равное число протонов и нейтронов, у тяжелых элементов количество нейтронов значительно больше.

Такая картина строения ядра подтверждается экспериментами на современных больших ускорителях с быстрыми протонами. Электрические силы отталкивания протонов уравновешиваются ядреными силами, которые действуют только в самом ядре. Хотя природа ядерных сил еще до конца не изучена, их существование является практически доказанным и полностью объясняет строение атомного ядра.

Связь массы и энергии

В 1932 камера Вильсона запечатлела удивительный фотоснимок, доказывающий существование положительных заряженных частиц, с массой электрона.

До этого положительные электроны были предсказаны теоретически П. Дираком. Реальный положительный электрон был обнаружен также в космическом излучении. Новую частичку назвали позитроном. При столкновении со своим двойником - электроном, происходит аннигиляция - взаимное уничтожение двух частиц. При этом освобождается определенное количество энергии.

Таким образом, теория, разработанная для макромира, полностью подходила для описания поведения мельчайших элементов вещества.



Похожие статьи