Солнечная радиация или ионизирующее излучение солнца. Горный климат Облучение в горах на 8000

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.

Климат в горах на больших высотах - горный климат. От климата соседних равнин отличается пониженными атмосферным давлением и температурой воздуха, повышенной солнечной радиацией, часто горно-долинными ветрами.

Климато-оздоровительные ресурсы зоны горного климата - занимают районы Большого Кавказа, Саяно-Алтайский и Байкальский горные хребты, горные районы северо-восточной Сибири. Здесь расположены курорты Белокуриха, Кисловодск и др. Горный климат характеризуется повышенным и высоким напряжением солнечной радиации, УФ-излучения, сниженным парциальным содержанием кислорода в воздухе. Горный климат, прежде всего среднегорный (1000 - 2000 м над уровнем моря) и низкогорный (400 - 1000 м над уровнем моря), обеспечивает общий благоприятный климатический фон для больных и отдыхающих, в том числе детей. Кисловодск - среднегорный курорт, здесь в течение года бывает более 300 солнечных дней: лето умеренно теплое, зима мягкая, отличается сухостью и безветренной солнечной погоды невелика (16 - 19 % в год). По климатическим особенностям Кисловодск с полным правом отнесен к одному из лучших курортных мест в Российской Федерации.

Горные климаты, климатические условия в горных местностях. Главной причиной климатических отличий гор от соседних равнин является увеличение высоты над уровнем моря. Кроме того, важные особенности Г. к. создаются рельефом местности (степенью расчленения, относительной высотой и направлением горных хребтов, экспозицией склонов, шириной и ориентировкой долин и др.), а также ледниками и фирновыми полями.

Можно различать собственно горный климат на высотах менее 3000-4000 м и высокогорный климат на более высоких уровнях. Горный климат существенно отличается от климатических условий в свободной атмосфере над равниной на тех же высотах; климатические условия на обширных высоких плато также отличаются от условий в долинах, на горных склонах или на отдельных пиках. Вследствие того что атмосферное давление, температура и влажность воздуха и др. его свойства меняются с высотой очень сильно, в горах наблюдаются лежащие один над другим климатические пояса. Это влечёт за собой и высотную поясность ландшафтов в целом.

С высотой атмосферное давление и плотность воздуха убывают; ещё быстрее уменьшается содержание водяного пара и пыли. Это увеличивает прозрачность воздуха для солнечной радиации в горных местностях. Интенсивность прямой солнечной радиации в горах по сравнению с равнинами повышается (а рассеянной радиации, наоборот, понижается). Вследствие этого освещённость увеличивается, особенно на снежных полях, а небо получает более густую синюю окраску. Эффективное излучение земной поверхности в горах также возрастает.

Температура воздуха в тропосфере падает с высотой. В горах она также зависит от высоты местности и ниже, чем на низменностях. Кроме того, она зависит и от экспозиции склонов: на южных склонах, где приток радиации больше, температура выше, чем на северных. Горные хребты, особенно расположенные в широтном направлении, являются поэтому важными климатическими границами (Гималаи, Кавказ). На больших высотах в горах на температурный режим влияет также наличие ледников и фирновых полей.

Во внутренних частях горных массивов ночью и зимой может происходить застой выхоложенного воздуха, что приводит к частому образованию в горах температурных инверсий (повышений температуры с высотой). Суточный ход температуры воздуха на отдельных вершинах уменьшен, приближаясь к условиям в свободной атмосфере; но в долинах и на плато он может быть весьма значительным (например, в Тибете и на Памире). Годовой ход температуры соответствует условиям на равнине в данной широтной зоне. Его амплитуда велика в средних и высоких, но мала в низких широтах.

Осадки в горах увеличиваются с высотой, однако лишь до некоторого уровня, в разных случаях различного. Это увеличение меняется в зависимости от экспозиции склонов. Наибольшие осадки наблюдаются на склонах, обращенных к преобладающим ветрам, особенно если воздушные массы, переносимые последними, обладают большим влагосодержанием (например, на западе Тянь-Шаня и Памира). На подветренных склонах, наоборот, наблюдаются фёны, а также бора. В горах создаются местные циркуляции воздуха, так называемые горно-долинные ветры; над ледниками - также ледниковые ветры.

Г. к. во многих случаях обладают благотворным физиологическим действием (горные курорты). Особое значение имеют умеренная разрежённость и чистота горного воздуха, увеличенная солнечная, в том числе ультрафиолетовая, радиация, прохлада. Наряду с этим фёны, увеличение осадков и др. особенности Г. к. могут иметь и отрицательное значение для организма человека. Выше 3000 м обычно начинаются проявления высотной болезни; интенсивность солнечной радиации здесь слишком велика, температура и давление воздуха низки, а осадки малы. Поэтому жизнь в условиях высокогорного климата часто требует длительной акклиматизации. Интересно, однако, отметить, что многие города Боливии и Перу расположены на высоте до 3800 м. Поселения и земледелие распространяются в горах до высоты 4000-5000 м.

Месяц назад "Власть" рассказала о радиоактивном загрязнении главного курорта России — Большого Сочи — и попросила администрацию города прокомментировать эту информацию. Ответа мы до сих пор не получили. Между тем дальнейшее расследование показало, что район Сочи заражен не только стронцием-90 (о чем мы писали), но и цезием-137.
Молчание сочинского руководства напомнило мне об одной не вполне еще давней истории. Летом 1989 года после поездки в Чернобыль я написал статью "Забытый гарнизон" о солдатах срочной службы, охранявших Чернобыльскую АЭС и зону отчуждения. Поначалу реакция на публикацию была достаточно бурной. В редакцию пришло письмо из Совета Министров СССР, в котором говорилось, что министерствам и ведомствам дано указание в кратчайшие сроки провести проверку и дать ответ.
И точно, по прошествии месяца ко мне стали прибывать ведомственные гонцы и вручать эти длинные отписки. Самым интересным был ответ из округа внутренних войск. Там говорилось, что за здоровьем солдат установлен тщательный контроль, что полученные ими дозы облучения во много раз превышают предельно допустимые и что журналистам следует успокоить родителей солдат.
Потом в редакцию приехали биологи из атомного министерства — Минсредмаша,— которые убеждали меня в том, что радиация в небольших дозах не только не вредна, но временами даже полезна. "Повышает потенцию,— переходя почти на шепот, утверждали они.— Но писать об этом, наверное, не нужно". "Почему не нужно? — спрашивал коллег изжелта-белый, похожий на ожившего мертвеца профессор.— Посмотрите на меня. Вот у меня суммарная доза выше предельно допустимой в четыре раза. А я — как огурец!" Не добившись своего — публикации о безвредности радиации,— они отбыли восвояси, и разом наступила полная тишина. Любые попытки получить дополнительную информацию наталкивались на яростное сопротивление. Чаще всего отказы сопровождались словами: "Не нужно лишний раз пугать народ".
Теперь, одиннадцать лет спустя, этот аргумент тоже чаще всего шел в ход. Ответственные и не очень лица, которых мы попросили сказать что-либо о радиационной обстановке в Сочи, уходили от ответа всеми возможными способами. Академик Российской академии медицинских наук (РАМН), к которому мы обратились, например, раз за разом делал вид, что не понимает, о чем идет речь. И объяснял, что на подготовку к такому интервью ему требуется не одна неделя. А один из специалистов по ядерным загрязнениям почвы сказал, что в курсе радиационной проблематики Сочи, но в историческом аспекте... и начал пересказывать нашу публикацию "Осторожно: курорт".

Курорт почти не виден
Поиск информации в доступных источниках привел к еще одному открытию: территория вокруг Сочи была загрязнена не только стронцием-90, о котором говорилось в опубликованном в номере "Власти" от 13 июня документе Минздрава, но и радиоактивным цезием-137 (см. карты 1 и 2). Причем уровень загрязнения был лишь немногим ниже 1 кюри на квадратный километр (для справки: при уровне загрязнения в 1 кюри/кв. км населению начинают предоставлять льготы за проживание на загрязненных территориях).
Без помощи специалистов-онкологов мы не могли установить явной связи между этим уровнем загрязнения и статистическими данными о заболеваемости различными видами рака в Краснодарском крае, на территории которого находится всероссийская здравница. По данным за 1996 год, опубликованным специалистами Онкологического научного центра РАМН, этот край по уровню онкологических заболеваний стоит в одном ряду с регионами, которые давно принято считать экологически неблагополучными (см. карты 3 и 4). Как следует из отчета управления здравоохранения Сочи, речь о котором пойдет ниже, в Краснодарском крае на каждые 100 тыс. жителей приходится 310 больных раком, в то время как, по данным онкологов РАМН, максимальная цифра по другим регионам — 290,5 (в Калининградской области).
Упомянутый отчет "Здравоохранение города Сочи (1994-1996 гг.)", который был издан бюро статистики управления здравоохранения города Сочи в 1997 году крошечным тиражом, только добавил вопросов. Судя по этому документу, смертность постоянного населения Сочи стабильно росла до 1994 года (см. график 1). Там была достаточно высокой смертность матерей во время родов — на треть выше, чем по Краснодарскому краю. Примерно на четверть больше, чем по краю, было мертворожденных детей. Но главное — уровень онкологических заболеваний в Сочи в 1996 году превышал достаточно высокие аналогичные показатели по Краснодарскому краю (см. график 2).
Однако самой примечательной оказалась другая цифра, приведенная в отчете сочинских медстатистиков (см. график 3). Он показывает, что уровень онкологической заболеваемости в Адлере — самый высокий в Сочи. В рекордном 1988 году он составлял 450 заболевших на 100 тыс., в то время как средний уровень по Северному Кавказу не превышал 234,9. А именно в Адлере, как свидетельствует опубликованный нами документ Минздрава, в 1958 году был самый высокий в СССР уровень загрязнения почвы стронцием-90.
В первой статье, посвященной радиоактивному заражению Черноморского побережья России, мы обещали предоставить слово всем, кто располагает информацией по этому вопросу. О реальной опасности, исходящей от радиоактивного стронция, и многих других аспектах этой проблемы нам рассказали два видных специалиста в области радиологии.

"Выводить стронций из организма опасно"
Валерий Степаненко, заведующий лабораторией дозиметрии Медицинского радиологического центра РАМН:
— Стронций-90 относится к достаточно опасным в биологическом отношении радионуклидам. Радиологически значимыми считаются уровни загрязнения стронцием в 3 кюри на квадратный километр. После Чернобыля это был уровень, при котором принималось решение о переселении людей. Но и при более низких уровнях загрязнения нужно учитывать, что стронций имеет период полураспада около 30 лет и накапливается в организме.
Разумеется, для точных оценок нужны реальные данные о степени загрязнения. Период выведения стронция-90 из организма человека сравним с периодом его полураспада — тоже около 30 лет. Само выведение — очень сложный вопрос, и он на сегодняшний день не решен. Стронций — аналог кальция, и всякие попытки выведения стронция приводят к тому, что вместе с ним теряется и кальций. Последствия этого для человека могут быть значительно опаснее, чем присутствие некоторого количества стронция в организме.
Хотя пользы от него нет и быть не может. Стронций задерживается в основном в костных тканях, что может приводить к появлению остеосаркомы — рака костной ткани. Облучается и красный костный мозг, что, с определенной степенью вероятности, приводит к возникновению лейкоза. Но достоверно зарегистрировано радиационно обусловленное увеличение количества лейкозов там, где уровни загрязнения стронцием были очень высокими — на Урале, на реке Теча.
Волнообразное нарастание количества онкологических больных, как в вашем случае — на Черноморском побережье,— скорее связано не с радиационными, а с социальными и демографическими факторами. Заболевания лейкозами, например, имеют возрастную структуру, и поэтому количество заболевших может колебаться в зависимости от изменения возрастной структуры населения. Влияние радиационного фактора исключать нельзя, но из-за малой статистики — больных ведь там не больше нескольких сотен — его влияние на общую статистику будет таким же малым.
Возвращаясь к лейкозам, могу сказать, что вероятность возникновения лейкоза зависит от количества стронция в организме не линейно. При малых концентрациях она низка, при определенном оптимуме она возрастает, затем снова уменьшается. Это подтверждено работами сотрудника нашего института, вводившего радиоактивный стронций крысам и изучавшего возникновение остеосаркомы. Стронций вызывает и различные соматические, не онкологические, заболевания.
А чтобы точно оценить ситуацию на Черноморском побережье, нужно было бы посмотреть статистику заболеваемости именно по лейкозам. Но вряд ли это вам удастся. Если такая статистика и есть, в чем я очень сомневаюсь, ее точность будет очень и очень низкой...

"Действие радиации усиливается на солнце"
Владимир Шевченко, профессор, заведующий лабораторией радиационной генетики Института общей генетики им. Н. И. Вавилова РАН, президент Радиобиологического общества России:
— По вашей просьбе я провел примерный расчет увеличения уровня онкологических заболеваний в Сочи. Получилось, что при взятых за основу расчета уровнях загрязнения в 0,5 кюри на квадратный километр увеличение за счет прямого действия канцерогенных эффектов может составить десятые доли процента. Статистически это невыявляемо.
В опубликованном вами документе говорится, что в кальциевых единицах содержание стронция в почве в Адлере в 180 раз выше, чем в Ташкенте. На практике это означает, что, видимо, в сочинской почве недостаточное содержание кальция. И растения получают вместо него больше стронция. Соответственно, больше стронция попадает вместе с пищей в организм человека. И увеличивает шансы радиационного воздействия. Но все равно эти уровни недостаточны для того, чтобы вызвать эффект, который мы могли бы зарегистрировать.
Конечно, стронций может вызывать и генетические мутации. В работах Стефенсона в шестидесятые годы было показано, что стронций-90 включается в хромосомы, и тем самым его генетическая опасность увеличивается. Распадаясь внутри хромосомы, он может облучать ее более эффективно, чем какой-либо источник извне. Прямо и непосредственно. Будут ли появляться различные уродства у человека? Мы моделируем такие ситуации на мышах. И оценка риска производится именно на основании этих исследований. В случае, который мы с вами рассматриваем, ожидаемый риск увеличится на те же самые десятые доли процента.
Связано ли это как-то с большим количеством мертворожденных детей в Сочи, я сказать не берусь. Чтобы установить это, нужны очень точные приборы и очень точная статистика.
Сейчас, кстати, ученые все больше обращают внимание на то, что кроме рака и генетических изменений радиация может вызывать болезни, приводящие к снижению трудоспособности и сокращению продолжительности жизни. На примере тех, кто принимал участие в ликвидации последствий чернобыльской аварии, установлено, что при больших дозах радиации возникают соматические болезни — сердечно-сосудистой системы, органов дыхания, иммунной системы.
Вы спрашиваете, почему же все-таки в Сочи повышенный уровень онкологических заболеваний? Нужно внимательно изучить фоновый уровень радиации. Там, где есть молодые горы, как в районе Большого Сочи, на поверхность выходят граниты и выделяется радиоактивный газ радон, поэтому там должен быть высокий радиационный фон.
Доказано, что радоновые ванны приводят к возникновению рака. В Австрии, где в Альпах было много лечебниц с радоновыми ваннами, у обслуживающих их врачей в десять раз повысилась частота возникновения онкологических заболеваний.
Кроме того, не нужно сбрасывать со счетов еще один "курортный" фактор. Как правило, чтобы получить урожай фруктов и овощей раньше и больше и чтобы подороже реализовать его приезжим, огородники применяют азотные удобрения, причем в больших количествах. А в растениях в результате накапливаются нитраты — это известный канцерогенный фактор.
Но самое главное то, что комбинированное действие различных канцерогенных факторов может приводить к синергизму — усилению эффекта по сравнению с ожидаемым. Например, радиация плюс солнечный ультрафиолет вызывает сильный синергизм. Или, возможно, стронций плюс радон.
Многие синергические эффекты еще не изучены, и, может быть, ответ на ваш вопрос о высокой онкологической заболеваемости в Сочи следует искать на уровне этих малых взаимодействий.
ЕВГЕНИЙ ЖИРНОВ



На территории земного шара есть места, где показатели радиационных загрязнений буквально зашкаливают, поэтому находиться там человеку крайне опасно.

Радиация является губительной для всего живого на земле, но при этом человечество не перестает пользоваться атомными электростанциями, разрабатывать бомбы и так далее. В мире уже есть несколько ярких примеров того, к чему может привести неосторожное использование этой огромной силы. Давайте посмотрим на места с самым большим уровнем радиоактивного фона.

1. Рамсар, Иран

В городе на севере Ирана зафиксирован самый высокий уровень естественного радиационного фона на Земле. Эксперименты определили показатели в 25 мЗв. в год при норме 1-10 миллизивертов.

2. Селлафилд, Великобритания


Это не город, а атомный комплекс, используемый для производства оружейного плутония для атомных бомб. Он был основан в 1940 году, а через 17 лет случился пожар, который спровоцировал выброс плутония. Эта ужасная трагедия унесла жизни многих людей, которые умирали впоследствии еще долгое время от рака.

3. Черч-Рок, Нью-Мексико


В этом городе находится урановая обогатительная фабрика, на которой произошла серьезная авария, в результате которой больше 1 тыс. тон твердых радиоактивных отходов и 352 тыс. м3 раствора кислотного радиоактивного отвала попало в реку Пуэрко. Все это привело к тому, что уровень радиации сильно вырос: показатели в 7 тыс. раз превышают норму.

4. Побережье Сомали


Радиация в этом месте появилась совсем неожиданно, а ответственность за ужасные последствия лежит на Европейских компаниях, расположенных на территории Швейцарии и Италии. Их руководство воспользовалось нестабильной ситуацией в республике и нагло сбросило радиоактивные отходы на берега Сомали. В результате пострадали ни в чем неповинные люди.

5. Лос-Барриос, Испания


На заводе по переработке металлолома Ачеринокс из-за ошибки контрольно-измерительных устройств был расплавлен источник цезия-137, что привело к выбросу радиоактивного облака с уровнем радиации, который превысил нормальные показатели в 1 тыс. раз. Через время загрязнение распространилось на территории Германии, Франции, Италии и других стран.

6. Денвер, Америка


Исследования показали, что в сравнении с другими регионами Денвер сам по себе имеет высокий уровень радиации. Есть предположение: все дело в том, что город находится на высоте в одну милю над уровнем моря, а в таких регионах атмосферный фон является более тонким, а значит, и защита от радиации солнечных лучей не такая сильная. К тому же, в Денвере находятся крупные месторождения урана.

7. Гуарапари, Бразилия


Красивые пляжи Бразилии могут быть опасными для здоровья, это касается мест отдыха в Гуарапари, где происходит эрозия естественного радиоактивного элемента монацита в песке. Если сравнивать с положенной нормой в 10 мЗв, показатели при измерении песка оказались намного выше – 175 мЗв.

8. Аркарула, Австралия


Уже не одну сотню лет распространителями радиации являются подземные источники Параланы, которые протекают через богатые ураном породы. Исследования показали, что эти горячие источники выносят на поверхность земли радон и уран. Когда ситуация изменится, непонятно.

9. Вашингтон, Америка


Хэнфордский комплекс является ядерным и основан он был в 1943 году правительством Америки. Его главная задача заключалась в выработке ядерной энергии для изготовления оружия. На данный момент его вывели из эксплуатации, но радиация продолжает исходить из него, и сохранится это еще на долгое время.

10. Карунагаппалли, Индия


В индийском штате Керала в округе Коллам есть муниципалитет карунагаппалли, где проводят добычу редких металлов, причем некоторые из них, например, монацит, в результате эрозии стал похожим на песок. Из-за этого в некоторых местах на пляжах уровень радиации доходит до 70 мЗв/год.

11. Гояс, Бразилия


В 1987 году произошел плачевный инцидент в штате Гояс, расположенном в центрально-западном регионе Бразилии. Сборщики металлолома решили забрать из местной заброшенной больницы аппарат, предназначенный для лучевой терапии. Из-за него в опасности оказался весь регион, поскольку незащищенный контакт с аппаратом привел к распространению радиации.

12. Скарборо, Канада


Еще с 1940 года жилищный квартал в Скарборо является радиоактивным, а называют этот участок Макклур. Спровоцировал загрязнение радий, извлеченный из металла, который планировали использовать для проведения экспериментов.

13. Нью-Джерси, Америка


В округе Берлингтон расположена база военно-воздушных сил Макгвайр, которая была включена Агентством по охране окружающей среды в перечень самых загрязненных авиабаз в Америке. В этом месте были проведены операции по очистке территории, но повышенные уровня радиации здесь фиксируются до сих пор.

14. Берег реки Иртыш, Казахстан


Во времена холодной войны еще на территории СССР был создан Семипалатинский испытательный полигон, где проводили тестирования ядерного оружия. Здесь было проведено 468 испытаний, последствия которых отразились на жителях окрестностей. Данные показывают, что пострадало примерно 200 тыс. человек.

15. Париж, Франция


Даже в одной из самых известных и красивых европейский столиц есть место, зараженное радиацией. Большие значения радиоактивного фона были обнаружены в форте Д"Обервильер. Все дело в том, что там находится 61 бак с цезием и радием, да и сама территория в 60 м3 загрязнена.

16. Фукусима, Япония


В марте 2011 года на атомной станции, расположенной в Японии, произошла ужасная ядерная катастрофа. В результате аварии территория, расположенная вокруг этой станции, стала похожей на пустыню, поскольку примерно 165 тыс. местных жителей покинули свои дома. Место признали зоной отчуждения.

17. Сибирь, Россия


В этом месте находится один из самых крупных химических комбинатов в мире. Он вырабатывает до 125 тыс. тонн твердых отходов, которые загрязняют грунтовые воды в ближайших территориях. Кроме этого, эксперименты показали, что осадки распространяют радиацию и на дикую природу, от чего страдают животные.

18. Янцзян, Китай


В округе Янцзян для постройки домов использовали кирпичи и глину, но, видимо, никто не подумал или не знал, что этот строительный материал не подходит для сооружения домов. Связано это с тем, что песок в регион поставляется из частей холмов, где содержится большое количество монацита – минерала, который распадается на радий, актиний и радон. Получается, что люди постоянно подвергаются воздействию радиации, поэтому показатель заболеваний раком очень высок.

19. Майлуу-Суу, Киргизия


Это одно из самых загрязненных мест в мире, и все дело не в ядерной энергетике, а в развернутой горнодобывающей и перерабатывающей уран деятельности, в результате которой выбрасывается около 1,96 млн. м3 радиоактивных отходов.

20. Сими Вэлли, Калифорния


В небольшом городе штата Калифорния находится полевая лаборатория НАСА, которая носит название Санта Сусанна. За годы ее существования было много неполадок, связанных с десятью ядерными реакторами малой мощности, что привело к выделению радиоактивных металлов. Сейчас в этом месте проводятся операции, направленные на очистку территории.

21. Озерск, Россия


В Челябинской области находится производственное объединение «Маяк», которое было построено еще в 1948 году. Предприятие занимается производством компонентов ядерного оружия, изотопов, хранением и регенерацией отработанного ядерного топлива. Здесь было несколько аварий, что привело к загрязнению питьевой воды, а это увеличило количество хронических заболеваний у местных жителей.

22. Чернобыль, Украина


Катастрофа, которая произошла в 1986 году, коснулась не только жителей Украины, но и других стран. Статистика показала, что существенно возросли случаи возникновения хронических и онкологических заболеваний. Что удивительно, официально было признано, что от аварии погибло только 56 человек.

Природный радиационный фон (ПФР) Северо-Кавказского региона определяется геологическим строением территории и радиогеохимическими особенностями его почвообразующих пород. Радиоизотопный состав природных вод Кавказских Минеральных Вод определяется, в основном, 222 Rn и 226 Ra, 228Ra, 224 Ra, содержание которых различается в различных месторождениях. Радиационная обстановка на нефтепромыслах Ставропольского края вызывает определенную озабоченность и определяется значительным загрязнением трубопроводов и оборудования естественными радионуклидами (ЕРН). Радиоактивное загрязнение ЕРН Троицкого иодного завода также представляет определенную проблему. Радоноопасность территорий региона неравномерна. На месторождениях естественных радиоактивных элементов радиационная обстановка не вызывает особой озабоченности.

Техногенный радиационный фон региона определяется, в основном, предприятиями ядерного топливного цикла, Волгодонской АЭС, Грозненским и Ростовским филиалами РосРАО, загрязнением из-за аварии на Чернобыльской АЭС и последствиями несанкционированного обращения с ИИИ.

Особенности ПРФ определяются, в первую очередь, геологическим строением территории. ПРФ обусловлен космическим излучением и излучением естественных радионуклидов - ЕРН (в основном, 40К и радиоактивные ряды 238U и 232Тh). ПРФ создает около 70% суммарной дозы, получаемой человеком от всех ИИИ. Материалов, не содержащих радионуклидов (РН), в природе не существует.

Содержание калия (одного из основных породообразующих элементов) достаточно высокое для предгорных равнин Европейской территории России, и в среднем составляет 1,5-2,5%. Для большинства прибрежных территорий среднее значение содержания калия лежит в пределах 0,5-1,5%. Его наибольшая концентрация наблюдается в коричневых и солончаковых почвах восточной части Ростовской области, Ставропольского края, северной части Дагестана - от 1,5 до 3%. При этом, в горной части Кавказа содержание калия в поверхностных образованиях местами превышает 3% и может доходить до 4,5%.

Содержание урана по Северо-Кавказскому региону в среднем составляет (2-3)*10 -4 %. При этом почво-грунты на большей территории долины р.Доа (север Ростовской области) характеризуются типичными для Европейской территории России низкими содержаниями (1,5-2,0)*10 -4 %. Наименьшая концентрация зафиксирована в горах Карачаево-Черкессии - менее 1,5*10-4%. Наибольшая (определенная по радию аэрогамма-спектрометрическим методом) – на юге Ставропольского края - (3-5)*10 -4 % и к северу от Краснодара - более 3*10 -4 %, при этом на Черноморском побережье Краснодарского края содержание урана (без учета локальных аномалий) составляет более (1,5-2)*10 -4 %.

Содержание тория в Северо-Кавказском регионе составляет в среднем 8*10-4 %. Самые низкое его содержание зафиксировано на побережье Азовского моря, отдельных районах Карачаево-Черкессии и южной части Дагестана - менее 6,0*10 -4 %. На юге Ставропольского края и примыкающих к нему территориях Кабардино-Балкарии и Ингушетии концентрация тория достигает (12-16)*10-4 %, на Черноморском побережье Кавказа ия (без учета локальных аномалий) – в среднем составляет (6-8)*10 -4 %.

Ряд полей повышенных содержаний урана в Предкавказье совпадает с выходами лакколитов кислых магматических пород (район Ессентуков, Пятигорска) с минеральными источниками, проявлениями газа и нефти Кавказские Минеральные Воды (КМВ) - один из старейших курортных районов страны, где режимные наблюдения за радиоизотопным составом минеральных вод ведутся уже более 50 лет. За это время накоплен огромный фактический материал, позволивший достаточно четко представить закономерности формирования химического и изотопного состава весьма разнообразных водопроявлений и месторождений. Сведения о концентрациях радона и четных изотопов радия в водах месторождений КМВ показывают, что содержание РН в минеральных водах меняются довольно значительно. Минеральным водам свойственны следующие концентрации радиогенных изотопов: 222Rn - до 37 Бк/л, 226 Ra - порядка 3,7*102 Бк/л, 224Ra и 228Ra - порядка 4,12*102 Бк/л. Критерием для отнесения минеральных вод к радиоактивным являются соответственно концентрации в 185, 0,37 и более 0,412 Бк/л.

В Кисловодском месторождении обогащение подземных вод (широкоизвестных нарзанов) радием происходит за счет выщелачивания пород фундамента, воды которого гидравлически связаны с водами осадочной толщи. По мере приближения к Эшкаконскому гранитному массиву концентрации радионуклидов повышаются и достигают 250 Бк/л по 222Rn . По результатам режимных наблюдений отмечается тенденция к снижению концентраций радия в некоторых источниках Кисловодского месторождения. Особенно заметен этот процесс для источника Нарзан, который из-за несовершенства каптажа и изменения в 50-е годы технологической схемы эксплуатации может разбавляться поверхностными водами.

В Ессентукском месторождении концентрации изотопов радия сопоставимы с аналогичными параметрами вод Кисловодска, но заметно уступают последним по концентрациям 222Rn (≤15 Бк/л).

Максимальные концентрации четных изотопов радия отмечены в воде самой глубокой на месторождении скважины №1-КВМ, вскрывшей доломитизированные известняки титон-валанжинского водоносного комплекса на глубине порядка 1,5 км.

В Пятигорском месторождении все скважины и источники отличаются низкими концентрациями 222Rn и довольно выдержанными (за исключением скважин и источников, эксплуатирующих свиту Горячего ключа палеогена) и высокими концентрациями четных изотопов радия. Наблюдается довольно тесная положительная корреляция между температурой воды и концентрациями 226Ra. С изотопами ториевого ряда корреляция значительно слабее. Отношения 228 Ra/ 224 Ra в минеральных водах близки к равновесным, что свидетельствует о достаточно продолжительном времени их контакта с вмещающими породами.

Наряду с углекисло-сероводородными, в окрестностях г. Пятигорска издавна известны высокоактивные радоновые воды. Отметим, что содержания 226Ra в водах достигает 1,3 Бк/л, а 222Rn до 103 Бк/л.

Сочетание гидрохимических, изотопных показателей и температуры (13,2-I9ОC) радоновых вод Пятигорска позволяет рассматривать их как продукт смешения восходящего потока вод длительной циркуляции с инфильтрационными водами местной области питания.

Весьма своеобразным среди других месторождений района КМВ является Бештаугорское месторождение радоно-радиевых вод. Гора Бештау (абсолютная отметка 1400 м) возвышается над окружающей равниной более чем на 800 м и является типичной местной областью питания подземных вод. Вмещающие породы - гранит-порфиры и граносиенит-порфиры - характеризуются повышенными концентрациями РН в зоне трещиноватости и выветривания. В зонах тектонических нарушений формируются ультра-пресные и пресные (0,23 -1,1 г/л) гидрокарбонатно-сульфатнокальциевые воды с весьма высокими концентрациями радона и изотопов радия, активность которых достигает по 222Rn 104 Бк/л.

Минерализация вод Железноводского месторождения колеблется от 5,9 до 8,5 г/л. Большинство водопунктов характеризуется повышенными концентрациями изотопов радия. Отмечается достаточно тесная корреляция (0,68) концентраций 226Ra с температурой воды. Радиологические параметры вод Железноводского месторождения достаточно устойчивы во времени (с концентрациями 222Rn 70-300 Бк/л).

Воды Кумагорского, Нагутского и Лысогорского месторождений формируются преимущественно в предгорьях Большого Кавказа. Основными источниками радиогенных изотопов для них являются породы кристаллического фундамента и батолиты (с концентрацией 222 Rn 20-30 Бк/л).

Радиационная обстановка на нефтепромыслах Ставропольского края

Впервые радиоактивное загрязнение местности при нефтедобыче было обнаружено американскими учеными. Содержащиеся в земной коре и в течение десятилетий доставляемые на поверхность в результате добычи нефти соли радия и тория загрязняли обширные территории в районе нефтяных месторождений не только в США, но и в других странах, в частности, в Азербайджане и России.

Основные радиационные факторы на нефтепромыслах:
- вынос на поверхность с попутными водами солей радия и тория;
- загрязнение ими технологического оборудования, труб, емкостей, насосов и почвы;
- разнос радиоактивных загрязнений и радиоактивного оборудования в результате демонтажных и ремонтных работ;
- воздействие радиации на персонал;
- в случае неконтролируемого разноса частей оборудования или неконтролируемого захоронения загрязненных грунта и шлака излишнее облучение населения.

В Ставрополье имеются данные о высокой радиоактивности трубопроводов и насосов воды. На стенках трубопроводов имеют место отложения солей радия с удельной радиоактивностью 1,35*10 Ки/кг и тория с активностью 1,2*10 -10 Ки/кг отложений. Это означает, что такие твердые отложения должны быть отнесены в соответствии с НРБ-99 к радиоактивным отходам.

В пересчете на число распадов указанные значения соответствуют:
- для радия - 226 - 5,7*10-10 Бк/кг;
- для тория - 232 - 4,4*10-10 Бк/кг.

Если предположить, что в результате фильтрации и испарения сопутствующих вод на поверхностях их разлива создаются аналогичные концентрации радия и тория, суммарные мощности доз гамма-излучения могут составить до 2-3 мрад/ч, т.е. достигнуть 10-кратного уровня допустимых доз облучения - для лиц категории Б и в 100 раз превысить уровни естественного радиоактивного фона.

Обследования, проведенные на 855 нефтяных скважинах объединения «Ставропольнефтегаз», показали, что в районе 106 из них максимальная мощность дозы гамма-излучения составляет от 200 до 1750 мкР/ч. Удельная активность отложений в трубах по 226Ra и 228Ra составила соответственно 115 и 81,5 кБк/кг. По оценкам, за все время деятельности ПО «Ставропольнефтегаз» в виде ЖРО и ТРО в окружающую среду сброшено отходов с активностью 352*1010 Бк.

Максимальные значения мощности экспозиционной дозы (МЭД ГИ), обусловленной отложениями радиобарита и радиокальцита, составили: криогенное оборудование- 2985 мкР/ч, возвратные помпы- 2985 мкР/ч, другие помпы- 1391 мкР/ч, донные помпы для откачки жидкостей из башен - 220 мкР/ч, компрессоры - 490 мкР/ч, осушители - 529 мкР/ч, продуктовые башни и колонны - 395 мкР/ч, колонны, скруберры, сепараторы- 701 мкР/ч, приборы технологического контроля- 695 мкР/ч. Удельные активности солей радия, отложившегося на технологическом оборудовании, могут быть более 100 кБк/кг, т. е. в десятки раз превысить допустимые значения согласно НРБ-99 - 10 кБк/кг.

При этом мощность дозы на наружной поверхности оборудования достигает 5000-6000 мкР/ч. До 4000-6000 мкР/ч составляет мощность дозы в местах захоронения отходов, образовавшихся при очистке технологического оборудования.

Исследования доказали, что радиационный фон достигает величин:
- на проходных мостках и рабочих площадках бригад подземного и капитального ремонта -350 мкР/ч;
- в 1 м от приборов автоматического контроля - 500-1000 мкР/ч;
- вокруг резервуаров с пластовыми водами - 250-1400 мкР/ч;
- вокруг сепараторов - 700 мкР/ч;
- в районе фонтанной арматуры - 200-1500 мкР/ч; - на грунте в устье скважин - 200-750 мкР/ч.

На скважинах, в местах, где радиационные потоки превышали 240 мкР/ч, проводятся следующие мероприятия:
- рабочие площадки, проходные мостики и грунт вокруг скважины очищаются от загрязнений радиоактивными солями и шламами, собранные грунт и шлам выносятся за ее пределы и закапываются на глубину 2 м;
- фонтанная арматура, струны и трубы выносятся за пределы рабочих зон на безопасное расстояние, а иногда заменяются;
- забитые отложениями замененные трубы перевозятся и складируются на специальном складе.

Обеспечение радиационной безопасности (РБ) на объектах с повышенным содержанием ЕРН в топливно-энергетическом комплексе (ТЭК) России - это новый вид деятельности, не имеющий достаточной нормативно-правовой базы и исторически сложившейся практики осуществления комплекса мероприятий производственного радиационного контроля и радиационно-экологического мониторинга, противорадиационной защиты, обращения с РАО, проектирования и создания радиационно безопасных технологий добычи и переработки органического топлива в условиях техногенного концентрирования ЕРН. Поэтому необходима регламентация следующих основных положений на национальном и международном уровне:
- распространение на эти производственные отходы понятия радиоактивных отходов (РАО) с формулировкой определения этого понятия; принятие классификации РАО, содержащих ЕРН, с обязательной регламентацией на международном уровне (учитывая недостаточность отдельно взятого национального опыта обращения с такими РАО) критериев классификации (по их природе, составу, агрегатному состоянию, удельной активности радионуклидов, общей активности, их химической стойкости и т.п.);
- установление (принятие) международных рекомендаций для разработки национальных Правил обращения и захоронения РАО, содержащих ЕРН, с учетом трудностей и/или невозможности распространения на них Правил из области ядерных и радиационных технологий, дающих РАО с радионуклидами осколочного и наведенного происхождения;
- разработка национальных законодательных актов по обращению с РАО, содержащими ЕРН, в различных неядерных отраслях народного хозяйства;
разработка национальных Санитарных правил обеспечения радиационной безопасности при работе с ЕРН;
- разработка национальных правил и методических рекомендаций по созданию (проектированию, сооружению и эксплуатации) радиационно безопасных технологий в видах деятельности (технологиях), в которых осуществляется техногенное концентрирование ЕРН до опасных уровней;
- разработка критериев отнесения таких отходов к РАО для лицензирования этого вида деятельности.

Радиоактивное загрязнение природными радионуклидами Троицкого йодного завода

Воздушно-десорбционный метод извлечения йода из буровых термальных вод включает в себя: сбор и усреднение состава исходных вод, подкисление природной щелочной воды в трубопроводе серной кислотой и выделение элементарного йода, выдувание йода воздухом и его поглощение для дальнейшей доочистки, нейтрализация отработанной технологической воды аммиаком до рН 7,0 - 7,5 регулированием подачи аммиачной воды, отстаивание от взвесей воды в технологическом водоеме-отстойнике и закачка отработанной технологической воды в подземные горизонты для поддержания пластового давления.

При подкислении серной кислотой минерализованной воды, содержащей обычно миллиграммовые количества стронция и бария, происходит образование взвесей, налипающих на внутренние поверхности трубопроводов и оборудования, и частично попадающих с технологической водой в технологический водоем. По мере накопления осадков ухудшаются технологические показатели, поэтому эти осадки выгружают и проводят зачистку оборудования и трубопроводов.

Выгруженные осадки в течение многих лет размещались на территории завода и не считались опасными отходами. Однако измерения мощности экспозиционной дозы в местах складирования показали, что на уровне 1 м МЭД достигает 1,5 – 1,7 мР/ч.

Как показали радиохимические анализы, исходные буровые воды содержат 106 – 2,0 Бк/л радия-226 и 2,0-2,6 Бк/л радия-228. При подкислении серной кислотой природной минерализованной воды, содержащей 30-35 мг бария и стронция в литре, образуются трудно растворимые осадки сульфатов, с которыми сокристаллизуются изотопы радия. В отработанной отстоявшейся воде из технологического водоема, предназначенной для закачки в подземные горизонты, концентрация радия-226 составляет 0,03-0,07 Бк/л. Таким образом, практически все изотопы радия, поступающие на поверхность, остаются вместе с сульфатными осадками на территории завода и в технологическом водоеме. По уровню альфа-, бета- и гамма-излучающих нуклидов в сульфатных осадках они должны рассматриваться в качестве РАО [ОСПОРБ-99].

За длительный период работы по этой технологии по данным Госкомэкологии нaкoплeнo около 5000 т таких отходов, удельная активность изотопов радия в которых соответствует удельной активности изотопов радия в уран-ториевой руде с концентрациями урана 0,18% и тория 0,6%, которые до настоящего времени определяют радиационную обстановку на заводе.

Удельная активность в осадках составляет: по 226Ra - 23 тыс. Бк/кг, по 228Ra -24,7 тыс. Бк/кг и по 228Th- 17 тыс. Бк/кг, что в соответствии с ОСП-72/87 обязывает относить их к РАО. Большая их часть находится на территории прудов-отстойников, меньшая - на производственной территории завода.

Необходимо отметить, что радиационная обстановка со временем меняется. С одной стороны, это связано с эволюцией ЕРН в радиоактивных отходах, то есть накоплением ДПР радия и соответствующим возрастанием удельной активности. С другой стороны, это обусловлено целенаправленными действиями руководства завода по улучшению радиационной обстановки путем отсыпки грунтом и бетонирования части территории, что уменьшает значимость пылерадиационного фактора и снижает МЭД ГИ. Изменение радиационной обстановки диктует периодическое дозиметрическое обследование территории завода для корректировки картины распределения мощности дозы излучения.

Месторождения естественных радиоактивных элементов

В регионе встречается значительное количество проявлений урановой минерализации, рудопроявлений и несколько месторождений, связанных с зонами структурно-стратиграфического несогласия. На Северном Кавказе находится несколько промышленных месторождении урана. При этом в регионе имеется один из двух на территории России урановорудных районов – Кавминводский (см. Таблицу).

Таблица. Промышленные месторождения урана в Северо-Кавказском регионе России

Оценка потенциальной радоноопасности территорий

Широкий спектр горных пород различного генезиса с повышенным первично-конституционным содержанием урана, сопровождаемый урановой минерализацией и рудообразованием, способствует отнесению данной территории к категории радоноопасных.

В основу карты радоноопасности положена упрощенная схема тектонического районирования, на которой различными литологическими знаками выделены основные тектонические элементы - древние и молодые платформы, щиты и срединные массивы, складчатые области фанерозоя, вулканические пояса.

Прогнозная радоноопасность территории Северо-Кавказского региона

Сочетание природных и техногенных факторов, в частности, многолетние разработки урановых месторождений в районе Кавказских Минеральных Вод, привели к заражению ряда водоносных горизонтов и отдельных источников трещинных вод радоном, ураном и другими тяжелыми элементами. Например, в рудничных водах месторождения Бештау концентрация радона достигает 60 000 Бк/л. На восточном погружении Кавказа широкие поля повышенной гамма-актизности связаны с миграцией радия и радона вследствие усиленной разработки нефтегазоносных структур. Отмечены интенсивные концентрации радона в отстойниках нефтегазоносных районов вблизи городов Ставрополя и Грозного. В этих же районах наблюдается интенсивная зараженность трубопроводов и оборудования нерастворимыми солями радия.

Техногенный радиационный фон территории

Техногенный радиационный фон Северо-Кавказского региона определяется совокупным воздействием искусственных ИИИ. К таковым относятся: предприятия ядерного топливного цикла, радиохимические производства, атомные электростанции, предприятия по захоронению РАО, а также ИИИ, применяемые в науке, медицине и технике.

Проблема радиационного влияния объектов использования атомной энергии на окружающую среду (ОС) содержит три аспекта:
- влияние при нормальной эксплуатации;
- изучение и прогноз облучения при аварийных ситуациях;
- проблема захоронения РАО.

На территории Северо-Кавказского региона распложены Волгодонская атомная станция, отработавшие урановые рудники, пункты захоронения РАО, проводились подземные ядерные взрывы и т.д.

Волгодонская атомная станция

Объединенная энергетическая система (ОЭС) Северного Кавказа, в которую включена Волгодонская АЭС, обеспечивает энергоснабжение 11 субъектов Российской Федерации обшей площадью 431,2 тыс. кв. км с населением 17,7 млн человек. Исследования перспектив развития электроэнергетики, атомной энергетики, ЕЭС России и ЕЭС Северного Кавказа, проведенные в Институте энергетических исследований РАН, Совете по изучению производительных сил Минэкономики РФ и институте «Энергосетьпроект», показали, что сооружение Волгодонской АЭС является наиболее целесообразным, как с энергетической, так и с экономической точек зрения.

Необходимость строительства была вызвана дефицитностью энергосистемы Ростовэнерго и Северного Кавказа, которая сохраняется до сих пор, несмотря на резкий спад производства.

Волгодонская АЭС относится к серии унифицированных энергоблоков с реакторами ВВЭР-1000. Каждый из энергоблоков мощностью по 1000 МВт размещается в отдельно стоящем главном корпусе. Реакторы аналогичного типа используются на большинстве АЭС мира. В административном отношении площадка АЭС расположена в Дубовском районе Ростовской области в 13,5 км от г. Волгодонска и в 19 км от г. Цимлянска на южном берегу Цимлянского водохранилища. Природная радиационная обстановка в районе размещения АЭС благополучная.

В тектоническом отношении район АЭС приурочен к эпигерцинской Скифской плите, характеризующейся невысокой сейсмичностью. В структурно-тектоническом отношении район АЭС входит в состав наименее раздробленного блока кристаллического фундамента вала Карпинского.

Результаты, полученные после Государственной экологической экспертизы при дополнительном изучении сейсмотектонических и сейсмологических условий района и площадки станции, свидетельствуют о том, что в пределах пункта расположения АЭС породы мезокайнозойского комплекса залегают субгоризонтально и не затронуты тектоническими нарушениями. Ближайшая к площадке (25-30 км от АЭС) крупная тектоническая структура - Донбасско-Астраханский разлом на временных геофизических разрезах (общих глубинных точек) в породах моложе каменноугольного возраста не проявляется, то есть, указанная структура на данном участке не является тектонически-активной последние 300 млн. лет.

Безопасность АЭС обеспечена реализацией принципа глубоко эшелонированной защиты, основанной на применении систем и барьеров на пути возможного выхода радиоактивных продуктов в окружающую среду и системы технических и организационных мер по защите барьеров и сохранению их эффективности.

Первым барьером является топливная матрица, т.е. само топливо, находясь в твердом виде и имея определенную форму, препятствует распространению продуктов деления. Вторым барьером является оболочка тепловыделяющих элементов (ТВЭЛов). Третий барьер –герметичные стенки оборудования и трубопроводов первого контура, в котором циркулирует теплоноситель. При нарушении целостности первых трех барьеров безопасности продукты деления будут задержаны четвертым барьером - системой локализации аварии.

Система локализации аварии включает в себя герметичные ограждения - защитную оболочку (гермооболочку) и спринклерную систему. Защитная оболочка представляет собой строительную конструкцию с необходимым набором герметичного оборудования для транспортировки грузов при ремонте и прохода через оболочку трубопроводов, электрокабелей и людей (люки, шлюзы, герметичные проходки труб и кабелей).

В строгом соответствии с ОПБ-88/97 системы 6езопасности АЭС выполнены многоканальными. Каждый такой канал: во-первых, независим от других каналов (выход из строя 1 любого из каналов не оказывает влияния на работу остальных); во-вторых, каждый канал рассчитан на ликвидацию максимальной проектной аварии без помощи других каналов; в-третьих, в каждый канал входят системы, основанные на использовании (наряду с активными принципами) пассивных принципов подачи раствора борной кислоты в активную зону реактора, не требующие участия автоматики и использования электроэнергии; в-четвертых, элементы каждого канала периодически опробуются для поддержания высокой надежности. В случае обнаружения дефектов, приводящих к выходу любого одного канала из строя, реакторная установка расхолаживается. В-пятых, надежность работы оборудования каналов систем безопасности обеспечивается тем, что все оборудование и трубопроводы этих систем разработаны по специальным нормам и правилам с повышенным качеством и контролем при изготовлении. Все оборудование и трубопроводы систем безопасности рассчитаны на работу при максимальном для данной местности землетрясении.

Каждый из каналов по своей производительности, быстродействию и прочим факторам достаточен для обеспечения радиационной и ядерной безопасности (ЯРБ) АЭС в любом из режимов ее работы, включая режим максимальной проектной аварии. Независимость трех каналов системы достигается за счет:
- полного разделения каналов по месту расположения в технологической части;
- полного разделения каналов систем безопасности в части электроснабжения АСУ технологическим процессом и других обеспечивающих систем.

Отработавшее ядерное топливо (ОЯТ) по условиям приема для дальнейшей переработки выдерживается в течение 3-х лет в бассейне выдержки реакторного отделения. Вывоз ОЯТ с АЭС после бассейна выдержки производится в транспортных контейнерах, обеспечивающих полную безопасность при транспортировке железнодорожным транспортом даже в случае железнодорожных аварий.

Суммарная расчетная активность выброса из вентиляционной трубы АЭС в режиме нормальной эксплуатации значительно ниже величин, регламентируемых СПАС-88/93.

Переработка и хранение ЖРО предусмотрены в спецкорпусе в течение всего срока службы АЭС. Переработка, хранение и сжигание ТРО в течение всего срока службы АЭС предусмотрены в здании переработки ТРО с хранилищем.

Хозяйственно-бытовые стоки проходят полную механическую и биологическую очистку. Очищенные стоки зоны строгого режима после радиационного контроля (в зависимости от показателей) будут направлены либо на установку спецводоочистки для их переработки, либо на повторное использование в систему технического водоснабжения ответственных потребителей.

Для обращения с РАО, образующимися при эксплуатации, на Волгодонской АЭС используется комплекс установок, систем, технологий и хранилищ, расположенных в местах их образования и спецкорпусе.

Пункт захоронения радиоактивных отходов (ПЗРО) Грозненского СК «Радон»

ПЗРО расположен в 30 км от г. Грозного Чеченской республики в северо-восточной части Грозненского района в районе г. Карах.

Река Терек отделена от ПЗРО Терским хребтом и находится от него на расстоянии 5 км. В зону обслуживания ПЗРО входят автономные республики: Чеченская, Ингушская, Дагестанская, Северо-Осетинская и Кабардино-Балкарская.

ПЗРО располагает двумя площадками с могильниками для твердых отходов (одна законсервированная, одна рабочая), не имеющими крыши. Имеется одна новая, крытая площадка. В состав ПЗРО входят также две емкости для бесконтейнерного захоронения ИИИ. Кроме того имеется насосная станция для перекачки жидких отходов. За время эксплуатации ПЗРО жидких и биологических отходов не поступало, бесконтейнерное захоронение ИИИ пока не проводилось.

Годовое поступление отходов до 1986 года составляло по активности до 50 Ки, в 1987 году - 60 Ки, в 1988 году - 190 Ки. Отходы, поступающие на захоронение, представляют собой газоразрядные источники, гамма-реле, дефектоскопы, плотномеры, фильтры и др. Горючих и крупногабаритных отходов в ПЗРО нет. Основные радионуклиды, входящие в состав ТРО, - это Th, U, 137Cs, 226Ra, 109Cd, 238Pu, 90Sr, 90Y, 119Sn.

В настоящее время на ПЗРО РАО не принимаются, и он эксплуатируется в режиме хранения ранее принятых РАО.

Пункт захоронения радиоактивных отходов в Ростовской области

Пункт захоронения РАО в Ростовской области принимает на захоронение медицинские отходы, ампульные источники геофизического, медицинского и технологического оборудования от предприятий и учреждений Ростовской области, Ставропольского и Краснодарского края.

ПЗРО Ростовского СК «Радон» расположен на стыке трех районов Ростовской области Аксайского, Мясницкого и Родионо-Несветайского. Территория ПЗРО представляет собой участок, имеющий прямоугольную форму размером 100 x 600 м (6 га) и СЗЗ в радиусе 1000 м. С трех сторон к ПЗРО (в СЗЗ) прилегают сельхозугодья совхоза «Каменнобродский». Объект расположен на склоне балки и имеет значительный уклон в северном направлении.

Грунты участка представляют собой четвертичные отложения лессовидных суглинков и глин мощностью 15 м. Грунтовые воды вскрыты в северной части участка на глубине 13 м, в южной части - 90 м. Река Тузлов (приток р. Дона) протекает на расстоянии 2,5 км севернее ПЗРО.

ПЗРО осуществляет сбор, транспортирование и захоронение ТРО и ИИИ. Переработка РАО не производится.

Мощность дозы гамма-излучения на большей части ЗСР находится в пределах 0,07-0,20 мкЗв/ч (7-20 мкР/ч), что не отличается от фоновых значений для местности.

В местах сбора проб в СЗЗ и ЗН аномальных точек не отмечалось. Результаты радиометрического и гамма-спектрического анализов проб почвы показали, что удельные активности РН в почвах ЗСР, СЗЗ и ЗН не превышают фоновых значений для данной местности. По t-критерию Стьюдента для доверительной вероятности р=0,95 их различия несущественны. Результаты многолетних наблюдений не выявили влияния ПЗРО на окружающую среду.

Радиоактивное загрязнение вследствие Чернобыльской аварии

Авария на четвертом энергоблоке Чернобыльской АЭС привела к обширному загрязнению Европейской части России. В соответствии с закономерностями пространственного распределения глобальных выпадений, значительная часть радионуклидов осела в местах наибольшей плотности выпадения атмосферных осадков. Для Северо-Кавказского региона к таким территориям относится Черноморское побережье Краснодарского края. Чернобыльское радиоактивное загрязнение было выявлено аэрогамма-спектрометрическими измерениями.

Загрязнение цезием-137 Северо-Кавказского региона

В 2000 году были проведены первые работы по мониторингу РЗ прибрежных районов российской части Черного моря в рамках программы, координируемой МАГАТЭ. Работы проводились в рамках Проекта технического сотрудничества МАГАТЭ RER/2/003 «Оценка состояния морской среды в регионе Черного моря» силами специалистов НПО «Тайфун» и Центра по гидрометеорологии и мониторингу окружающей среды Черного и Азовского морей (ЦГМС ЧАМ). В скоординированной программе участвуют все причерноморские государства, что дает возможность ежегодно иметь картину радиоактивного загрязнения прибрежных районов Черного моря в целом.

Цель такого мониторинга - отслеживание трендов в радиационной обстановке в прибрежных районах Черного моря. Этот вид мониторинга проводится за счет национальных ресурсов каждого государства. Для практической реализации мониторинга стороны договорились дважды в год (в июне и ноябре) производить отбор проб воды, пляжных песков и морской биоты в нескольких точках побережья каждой из стран и определять в этих пробах содержание РН. Из РН приоритетными являются 137Cs, 90Sr и 239,240Pu.

Результаты гамма-спектрометрического анализа содержания 137Cs в пробах морской среды, отобранных в ноябре 2000 года на Российском побережье Черного моря.

Радиационные последствия промышленных подземных ядерных взрывов

В промышленных целях в бывшем СССР в широких масштабах проводились подземные ядерные взрывы (ПЯВ). Эти взрывы были составной частью советской программы «Атомные взрывы в мирных целях». В 1969 году. в 90 км к северу от г. Ставрополь (Ипатовский район) по заказу Министерства газовой промышленности был произведен ПЯВ, получивший условное название «Тахта-Кугульта». Взрыв был произведен на глубине 725 м в массиве горных пород- глин и алевролитов. Мощность заряда составила менее 10 кТ. В настоящее время объект законсервирован, радиационная обстановка нормальная.

Неаварийное радиоактивное загрязнение

Радиоэкологические исследования на Северном Кавказе были начаты ГГП «Кольцовгеология» в 1989 году путем проведения аэрогамма-спектрометрической съемки (ГГП «Невскгеология») масштаба 1:10000 и пешеходной гамма-съемки масштаба 1:2000 и крупнее.

Государственным геологическим предприятием «Кольцовгеология» при проведении аэро- авто- и пешеходных гамма-съемок на территории городов Кавминвод выявлен 61 участок радиоактивного загрязнения (УРЗ).

УРЗ связаны в основном с техногенно-измененным природным типом загрязнения, обусловленным применением при строительстве дорог, подпорных стен, реже зданий, высокорадиоактивных гранитов и травертинов, добытых из карьеров гор-лакколитов Змейка, Шелудивая, Кинжал и др. МЭД ГИ на таких УРЗ колеблется от 0,1 - 0,2 до 3 мР/ч.

Ликвидировано 46 УРЗ. Отдельные загрязнения, связанные с полями травертинов, ликвидации не подлежат, так как расположены на месте каптажа минеральных источников (парковая зона города Железноводска) на склоне г. Железной. Такие участки огорожены к доступ в их пределы ограничен для населения.

Использование высокорадиоактивных строительных материалов при возведении фундаментов жилых зданий создало, наряду с повышенным природным гамма-фоном, характерным для центральной части региона Кавминвод, сложную радоноопасную обстановку.

Кроме вышеуказанных УРЗ, в гг. Ессентуки, Кисловодске, Пятигорске выявлены трубы, загрязненные РН с МЭД ГИ до 0,6 мР/ч. Трубы были завезены с нефтепромыслов восточного Ставрополья (15 шт.) и использовались в качестве стоек оград. В г. Ессентуки было выявлено несколько радиоактивных пятен под водосточными трубами с МЭД до 0,2 мР/ч, обусловленных Чернобыльскими осадками в мае 1986 г. Наиболее мощный УРЗ, связанный с разбитой ампулой жидкого радиевого раствора, выявлен на территории Ессентукской грязелечебницы. Источник с МЭД ГИ свыше 3 мР/ч использовался в качестве генератора радона и после разгерметизации был выброшен.

Район Большого Сочи подвергся загрязнению Чернобыльскими осадками, при этом установлено закономерное увеличение числа радиоактивных пятен от северо-западной его границы (Туапсинский район практически не загрязнен) к юго-восточной, то есть к границе с Абхазией.

По данным аэрогамма-спектрометрической съемки ГГП «Невскгеология», плотность поверхностного загрязнения цезием-137 возрастает в восточном направлении, а также от побережья в сторону гор от 0,5 до 2-3 Ки/км2. Всего разными методами съемок в районе г. Сочи выявлено 2503 радиоактивных пятна, из которых городскими службами в наиболее заселенной черте города было ликвидировано (под контролем работников ГГП «Кольцовгеология») 1984 пятна. Размеры пятен составляли от нескольких квадратных метров до нескольких сотен м2 при МЭД ГИ до 0,3- 4,0 мР/ч.

Автогамма-спектрометрической съемкой, проведенной на территории Ставрополья, установлено, что большинство нефтяных месторождений создают РЗ при добыче из них водонефтяной смеси, в случае аварийных прорывов и сбросов дебалансовых вод на поля испарений (отстойники). Отложения радийсодержащих солей на внутренних стенках нефтяного оборудования (особенно насосно-компрессорных труб) и последующего их использования (после списания) в качестве строительных материалов при возведении жилья, заборов и других несущих конструкций создали многочисленные РЗ в селитебной местности. МЭД ГИ таких труб нередко достигает 1-2 мР/ч и в этой связи города и, особенно поселки Нефтекумского, Левокумского и отчасти Буденновского районов, можно отнести к поселкам с высокой плотностью УРЗ, так как количество радиоактивных труб измеряется многими тысячами (судя по обследованному г. Нефтекумску, где выявлено более 1500 радиоактивных труб). Ликвидация таких загрязнений сопряжена со значительными материальными затратами и поэтому ведется медленно. Учитывая, что на большинстве нефтяных месторождений Ставрополья образуется значительное количество жидких и твердых РАО, все поселки, расположенные на территории нефтепромыслов, должны быть подвергнуты первоочередному радиационному обследованию.

В полутора километрах от Краснодара располагается НИИ биологической защиты растений (НИИ БЗР) - одно из немногих на территории бывшего СССР учреждение, где начиная с 1971 г. проводились секретные работы по радиобиологии. Ученые исследовали возможности выращивания различных сельскохозяйственных культур при загрязнении окружающей среды РН, а также полученную сельхозпродукцию на пригодность к употреблению в пищу.

На опытное поле площадью 2,5 га, засаженное злаками, кукурузой, подсолнечником, сливой, виноградом и другими культурами, вносились растворы РН, получающихся в результате ядерного взрыва (цезий-137, стронций-90, рутений-106, церий-144 и ряд других). Изучали распределение РН в растениях в зависимости от их вида, типа почв и погодных условий. Существовавшая до 1998 г. защита радиационно опасного объекта (РОО) сегодня существенно ослаблена. Опытное поле практически выведено из-под постоянного контроля, что привело к несанкционированному доступу на него посторонних лиц. На радиоактивном поле МЭД ГИ достигает 250-300 мкР/ч.

В последние годы объем поисков техногенного неаварийного РЗ сократился, но тем не менее продолжается выявление yчастков зaгpязнeния в различных городах.

В итоге можно сказать, что радиационная обстановка в Северо-Кавказском регионе России формируется как за счет природных, так и техногенных факторов, и в целом не вызывает серьезной озабоченности с точки зрения облучения населения и окружающей природной среды.



Похожие статьи