Манометрическое определение БПК. Что нужно знать о БПК? Определение бпк 5 в сточных водах

Если анализ проведен правильно, то в координатах БПК – дни эксперимента должна получиться кривая похожая по форме на кривую А.
Если же данная кривая не наблюдается, то причиной этого может явиться один или несколько следующих факторов: разгерметизация колбы, задержка развития бактерий, нитрификация, неправильный выбор диапазона измерения.
Разгерметизация колбы может привести к тому, что будет наблюдаться кривая Б, или же к отсутствию отклика. В этом случае следует проверить целостность оборудования и правильность установки измерительной головки.

При анализе образцов с недостаточным начальным количеством аэробных бактерий наблюдается кривая типа В. К данному явлению приводит и акклиматизация бактерий. Именно поэтому следует использовать флору, адаптировавшуюся к данному образцу воды.

Выход за измеряемый диапазон может привести к получению графика, схожего с кривой Г. Используйте разбавление образца чтобы устранить данное явление.
Очень важно выбрать диапазон определения БПК так, чтобы значение, высвечиваемое на шкале прибора, лежало в интервале 20 – 40. Если это значение будет меньше 20, то нельзя утверждать, что полученный результат отражает значение БПК с достаточной точностью. Единственным исключением из этого правила является минимальный диапазон определения БПК (1 – 40), в котором точность измерения максимальна.
Если диапазон БПК неизвестен, то для его оценки используйте результаты определения ХПК (химического потребления кислорода) или данные серии анализов БПК с различными объемами или разбавления образца. Второй вариант предпочтительнее, т.к. соотношение БПК/ХПК строго не регламентировано: в России оно принимается примерно равным 0,5; за рубежом – примерно 0,8. Однако, эта процедура понадобится скорее всего лишь однажды, когда будет проводиться первый анализ.

Примером проявления нитрификации (появлением NO2–ионов вследствие окисления ионов аммония) является кривая Ан. Биологическое окисление органического азота в хозяйственных стоках, как правило, наблюдается спустя пять-шесть дней, что связано с более медленным ростом нитрификационных бактерий. Однако аномально высокое значение поглощения кислорода (особенно при анализе выходных вод) объясняется значительным вкладом жизнедеятельности нитрификационных бактерий в общее значение БПК. Для устранения влияния нитрификации используйте ингибитор нитрификации – N-аллилтиомочевину.

Проведение анализа в образцах воды, значение рН в которых отличается от нейтрального, приводит к сильно заниженным результатам. Нейтрализуйте образец при помощи слабого раствора гидроксида натрия или серной кислоты.

Российская ФедерацияПНД Ф

ПНД Ф 14.1:2:3:4.123-97 (ФР.1.31.2007.03796) Количественный химический анализ вод. Методика выполнения измерений биохимического потребления кислорода после n-дней инкубации (БПК(полн)) в поверхностных пресных, подземных (грунтовых), питьевых, сточных и очищенных сточных водах (с Изменениями и Дополнениями)

________________

весы лабораторные 2 класса точности, ГОСТ 24104 *;

________________

* На территории Российской Федерации действует ГОСТ Р 53228-2008 . - Примечание изготовителя базы данных.

весы технические 4-го класса точности, ТУ 25-06-385-77 или аналоги;*

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

сушильный электрический шкаф;

холодильник для хранения проб, обеспечивающий температуру 24 °С;

аппараты для встряхивания типа АВУ-1, АВУ-6п, АВУ-10р ТУ 64-1-1081;

БПК-тестер или оксиметр любой модификации, позволяющий воспроизводить метрологические характеристики, приведенные в таблице 2;

мешалка магнитная, ТУ 25-11-834-73;

насос вакуумный любого типа;

аквариумный микрокомпрессор АЭН, ТУ 16-064, 011;

аппарат для дистилляции воды, ТУ 64-1-2-2718;

колбы плоскодонные узкогорлые (ГОСТ Р 50222*) с пришлифованной стеклянной пробкой (конусы по ГОСТ Р 50222 *) вместимостью 250 см, калиброванные с точностью до 0,1 см;

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

эксикаторы диаметром 140; 190; 250 мм, ГОСТ 25336 ;

вставки для эксикаторов диаметром 128; 175; 230 мм, ГОСТ 9147 ;

мензурки или цилиндры мерные вместимостью 25; 50; 250; 1000 см, ГОСТ 1770 ;

пипетки 2 класса точности вместимостью 10,0; 20,0; 50,0; 100,0 см, ГОСТ 29169 *;

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

колбы мерные 100; 250; 500; 1000 см, 1-го класса точности, ГОСТ 1770 ;

колбы конические ТС, ТХС вместимостью 250 и 500 см, ГОСТ 25336 ;

воронки лабораторные В-75-110 ХС; В-100-150 ХС, ГОСТ 25336 ;

трубки хлоркальциевые ТХ-П-1-17(25), ГОСТ 25336 ;

стаканчики для взвешивания (бюксы), ГОСТ 25336 ;

склянки и банки стеклянные с винтовым горлом, с прокладкой и крышкой или с притертой пробкой для отбора и хранения проб и реактивов вместимостью 500; 1000; 1500*; 2000 см, ТУ 6-19-6-70;

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

флаконы и банки цилиндрические полиэтиленовые с навинчивающимися крышками для отбора и хранения проб и реактивов вместимостью 100; 250; 500; 1000; 2000 см, ТУ 6-19-45-74;

бумажные фильтры обеззоленные "синяя лента", ТУ 6-09-1678;

фильтры стеклянные класса ПОР-40, ГОСТ 23336;

ткани шелковые (мельничный газ) N 19-25, ГОСТ 4403 ;

крахмал растворимый картофельный, ГОСТ 10163 ;

калий фосфорнокислый двузамещенный 3-водный, ГОСТ 2493 ;

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

натрия азид;

железо (III) хлористое 6-водное, ГОСТ 4147 ;

натрий фосфорнокислый двузамещенный 12-водный, ;

калий фосфорнокислый однозамещенный, ;

калий гидроокись, ТУ 6-09-5-2322;

кальций хлористый, ГОСТ 4460;

сульфаминовая кислота, ТУ 6-09-2437;

магний сернокислый 7-водный, ;

глютаминовая кислота ч.д.а., ТУ 6-09-07-1091.

Реактивы для определения концентрации растворенного кислорода йодометрическим методом:

марганец хлористый 4-водный, или

марганец сернокислый 5-водный или 7-водный, ;

натрий серноватокислый 5-водный, ГОСТ 27068 , или

стандарт-титр 0,1 моль/дм эквивалента, ТУ 6-09-2540;

натрий хлорноватистый с содержанием активного хлора не менее 3%, или известь медицинская;

калий фтористый, ГОСТ 20849;

Все реактивы должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019 .

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004 .

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

Выполнение измерений может производить химик-аналитик, освоивший данную методику.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20±5) °С;

атмосферное давление (84,0-106,7) кПа (630-800 мм рт.ст.);

относительная влажность (80±5)%;

напряжение сети (220±10) В;

частота переменного тока (50±1) Гц.

7. ОТБОР И ХРАНЕНИЕ ПРОБ

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 "Вода. Общие требования к отбору проб" .*

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

7.1. Подготовка посуды для отбора проб и анализа

Используется полиэтиленовая посуда, а при наличии в воде нефти, углеводородов, моющих средств и пестицидов используются банки из темного стекла.

Посуда для отбора проб и анализа должна быть химически чистой. Она промывается смесью бихромата калия и серной кислоты (хромовой смесью), тщательно водопроводной водой, затем 3-4 раза дистиллированной водой. Не разрешается пользоваться поверхностно-активными веществами и органическими растворителями.

Посуду для отбора проб сушат на воздухе, а используемую для анализа, за исключением мерной, сушат в сушильном шкафу при 160 °С в течение 1 часа. Запрещается сушить колбы на колышках. Сосуды для отбора проб должны быть четко промаркированы.

Колбы для инкубации на определение БПК объемом 250 см должны быть откалиброваны с точностью до 0,1 см. Колбу тщательно моют, высушивают (снаружи и изнутри) и взвешивают вместе с пробкой на технических весах с точностью до 0,01 г. Затем наполняют ее дистиллированной водой до краев и закрывают стеклянной пробкой так, чтобы под пробкой не оставалось пузырьков воздуха. Обтирают склянку досуха и снова взвешивают с точностью до 0,01 г.

Разность в весе даст массу воды в объеме склянки, которую для перевода на объем следует разделить при температуре воды 15 °С - на 0,998, при 20 °С - на 0,997 и при 25 °С - на 0,996.

Химически чистая посуда для определения БПК должна храниться с закрытыми стеклянными притертыми пробками или завинчивающимися крышками.

7.2. Отбор проб

7.2.1. Для отбора глубинных проб воды из озер, водохранилищ, прудов и рек следует использовать батометры системы Молчанова, Рутнера или Скадовского-Зернова.

Для отбора проб поверхностных пресных вод с глубины не более 0,5 м используется бутыль с привязанной пробкой, которую помещают в футляр или пробоотборник с грузом. Футляр снабжен петлей, к которой привязывают веревку с размеченными отрезками, указывающими глубину погружения. На требуемой глубине, с помощью привязанной к пробке веревки выдергивают пробку из горла бутыли. После заполнения бутыли водой (на поверхности воды не появляются пузырьки воздуха) ее поднимают на поверхность.

7.2.2. Пробы сточной воды с глубины 0,5 м отбираются пробоотборником любого типа.

7.2.3. Отбор природных и сточных вод следует производить в местах наибольшего перемешивания.

7.2.4. На очистных сооружениях отбирать пробы для анализа на БПК следует до системы хлорирования, т.к. активный хлор является мешающим определению веществом. Если необходимо проанализировать пробу после хлорирования, следует удалить из исследуемой воды свободный хлор (см. раздел 7.8.3.).

7.2.5. При взятии проб измеряют температуру воды. Для этого * используют термометр от 0 до 100 °С, 2-го класса точности поГОСТ 28498 *. Для определения температуры на месте взятия пробы 1 дм воды наливают в склянку, нижнюю часть термометра погружают в воду и через 5 мин отсчитывают показания, держа его вместе со склянкой на уровне глаз. Точность определения ±0,5 °С.

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

7.2.6. Не допускается консервирование проб, предназначенных для определения в них БПК.

7.2.7. Отобранные пробы наливают, предварительно ополаскивая отбираемой водой, в банки или флаконы объемом 1,5 дм, заполняя их до краев и закрыв без пузырей воздуха пришлифованными стеклянными пробками или полиэтиленовыми крышками. Под полиэтиленовые крышки подкладываются тефлоновые или из алюминиевой фольги прокладки. Пробы упаковываются в деревянные ящики для переноски проб и прокладываются бумагой или ветошью. При транспортировке не держать пробы на свету.

7.2.8. При отборе пробы составляется протокол по утвержденной форме, в котором указывается цель пробоотбора, число, время, место отбора пробы, температура воды, предполагаемые загрязняющие вещества, номер пробы, ФИО отбиравшего. На бутыль наклеивается этикетка с указанием номера пробы, места и даты отбора.

7.3. Хранение проб

Необходимо анализировать пробы тотчас же после отбора. В том случае, если обработать пробу сразу после отбора невозможно, ее следует хранить не более 24 часов при температуре 4 °С.

7.4. Предварительная обработка пробы

БПК определяют в натуральной (взболтанной) пробе при осуществлении экоаналитического контроля за соблюдением нормативов качества.

БПК определяют в отстоянной и фильтрованной пробе при осуществлении производственного контроля за эффективностью технологического процесса очистки сточных вод на разных стадиях.

7.4.1. Определение в натуральной (взболтанной) пробе. В лаборатории перед началом определения проба тщательно перемешивается (с помощью встряхивающего аппарата или вручную).

7.4.2. Определение после отстаивания. Проба отстаивается в цилиндрах в течение 2 часов. Сифоном отбирают в бутыль для анализа верхние 3/4 прозрачного слоя жидкости над осадком, не захватывая взмученный осадок.

7.4.3. Определение в фильтрованной пробе. Проба тщательно перемешивается и фильтруется через обеззоленный фильтр "синяя лента".

7.5. Приготовление разбавляющей воды и растворов

Дистиллированная вода, применяемая для приготовления всех растворов и разбавляющей воды, не должна содержать веществ, влияющих на определение БПК (меди более 0,01 мг/дм, цинка более 1 мг/дм, свободного хлора, хлорамина, органических веществ и кислот). Дистиллированную воду для приготовления разбавляющей воды хранят тщательно защищенной от какого бы то ни было загрязнения при температуре 20 °С. Сосуды для этой воды нельзя использовать для других целей.

7.5.1. Разбавляющую воду готовят из дистиллированной воды, полученной накануне анализа, выдержанной при температуре 20 °С; ее насыщают кислородом воздуха, аэрируя до концентрации растворенного кислорода не менее 8 мг/дм и не более 9 мг/дм. Можно обогащать кислородом воду длительным встряхиванием бутыли, наполненной на 2/3 дистиллированной водой.

В день применения в разбавляющей воде измеряют содержание растворенного О, затем добавляют 0,3 г/дм бикарбоната натрия для доведения рН до оптимальных значений.

рН разбавляющей воды должна быть в диапазоне 7,0-8,0.

В разбавляющую воду добавляют фосфорные и аммонийные соли, гексагидрат хлорида железа, хлорид кальция и сульфат магния для создания устойчивой буферной системы, которая позволяет поддерживать постоянное значение рН в течение любого времени инкубации, не изменяющееся при выделении СО (продукт метаболизма бактерий).

7.5.1.1. Растворы солей для приготовления разбавляющей воды

Фосфатный буферный раствор рН=7,2.

8,5 г однозамещенного фосфорнокислого калия (KНРО), 21,75 г двузамещенного фосфорнокислого калия (KНРО), 33,4 г двузамещенного фосфорнокислого натрия 12-водного (NaHPO·12НО) и 1,7 г хлорида аммония (NHCI) растворяют в дистиллированной воде и доводят объем до 1 дм.

Сульфат магния

22,5 г MgSO·7HO ч.д.а. растворяют в дистиллированной воде, доводят объем до 1 дм.

Хлорид железа

0,25 г FeCI·6HO ч.д.а. растворяют в дистиллированной воде, доводят объем до 1 дм.

Хлорид кальция

27,5 г СаСl ч.д.а. безводного растворяют в дистиллированной воде, доводят объем до 1 дм.

Растворы хранят в темноте, при комнатной температуре не более месяца. Не используют при появлении осадка.

В день анализа к 1 дм разбавляющей воды прибавляют 1 см фосфатного буферного раствора, 1 см раствора сульфата магния, 1 см раствора хлорида кальция, 1 см раствора

хлорида железа.

7.5.1.2. Заражение микрофлорой

В разбавляющую воду в день анализа добавляют бактериальную затравку. (При анализе сточных вод сооружений биологической очистки такой затравки не требуется). Бактериальную затравку добавляют при исследовании искусственно приготовленных растворов, производственных сточных, олиготрофных поверхностных пресных, грунтовых, глубоко очищенных и обеззараженных сточных вод.

Бактериальная затравка может отбираться из разных источников, при приготовлении разбавляющей воды используется один из предлагаемых вариантов:

а) Сточные воды с городских сооружений биологической очистки, отобранные после песколовок. Добавляют 0,3-1,0 см на 1 дм разбавляющей воды.

б) Аквариумная вода. Добавляют 5,0-10,0 см на 1 дм разбавляющей воды.

в) Речная вода. Добавляют 10,0-20,0 см на 1 дм разбавляющей воды.

7.5.1.3. Подавление нитрифицирующих бактерий

Наличие нитрификации в поверхностных пресных, биологически очищенных и слабо загрязненных сточных водах может существенно исказить результат определения БПК. Для подавления нитрификации в день анализа в разбавляющую воду добавляют ингибитор - раствор тиомочевины или аллилтиомочевины - так, чтобы концентрация его в разбавляющей воде составляла 0,5 мг/дм, для чего 1 см раствора тиомочевины добавляют на каждый 1 дм разбавляющей воды.

7.5.1.4. Проверка степени чистоты разбавляющей воды холостым опытом

При определении или четыре кислородные колбы заполняют разбавляющей водой, в двух определяют кислород сразу в день исследования ("нулевой" день), время между разбавлением пробы и определением кислорода в "нулевой" день не должно превышать 15 мин. В остальных двух колбах, которые помещают в термостат вместе с анализируемыми пробами, - через 5 суток.

Разница средней концентрации кислорода в пробе холостого опыта - нулевого дня и через 5-суточный срок инкубации не должна превышать 0,5 мг/дм кислорода.

7.5.2. Приготовление растворов

7.5.2.1. Йодистый калий, 10%-ный водный раствор

Навеску 10 г KI помещают в коническую колбу, растворяют в 90 см дистиллированной воды.

7.5.2.2. Серная кислота, водный раствор 1:50

1 часть концентрированной серной кислоты осторожно добавляют к 50 частям дистиллированной воды, перемешивают.

7.5.2.3. Сульфит натрия, водный раствор 0,025 н

Раствор сульфита натрия готовят из стандарт-титра разбавлением в четыре раза дистиллированной водой.

7.5.2.4. Тиомочевина, водный раствор

Навеску 500 мг тиомочевины растворяют в 1 дм дистиллированной воды.

7.5.2.5. Крахмал, 0,5%-ный водный раствор

Растирают в ступке 5 г крахмала с небольшим количеством холодной дистиллированной воды. В кипящую дистиллированную воду объемом 1 дм вливают растертый крахмал, постоянно перемешивают при кипячении 3-5 минут, затем охлаждают. В охлажденный раствор для консервации прибавляют салициловую кислоту - 1,25 г на 1 дм раствора крахмала или 2-3 капли хлороформа. Срок хранения не более 2 недель.

7.5.2.6. Щелочной раствор йодида калия с азидом натрия

В 700 см дистиллированной воды растворяют 700 г KОН и 150 г KI, отдельно растворяют 10 г NaN в 40 см дистиллированной воды, оба раствора смешивают и доводят объем до 1 дм, если раствор не прозрачен, его отстаивают, а затем сифонируют.

7.5.2.7. Соляная кислота, 0,5 моль/дм раствор

40 см концентрированной соляной кислоты (1,19) добавляют к 500 см дистиллированной воды и доводят объем до 1 дм.

7.5.2.8. Гидроксид натрия, 0,5 моль/дмраствор.

Навеску 20 г гидроксида натрия растворяют в дистиллированной воде и доводят объем до 1 дм.

7.5.2.9. Сульфат меди, 10%-ный раствор*

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

1,0 г сульфата меди (в пересчете на безводную соль) растворяют в 9 см дистиллированной воды. Хранят в холодильнике*.

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

7.5.3. Приготовление растворов для определения растворенного кислорода йодометрическим методом

7.5.3.1. Раствор хлорида (сульфата) марганца

210 г МnСl·4НО, или 260 г MnSO·5НO, или 290 г MnSO·7HO растворяют в 300-350 см дистиллированной воды, фильтруют в мерную колбу вместимостью 500 см и доливают дистиллированной водой до метки на колбе. Хранят в плотно закрытой склянк

7.5.3.2. Щелочной раствор йодида калия (или натрия)

15 г KI (или 18 г Nal·2HO) растворяют в 20 см, а 50 г NaOH - в 50 см дистиллированной воды. Полученные растворы смешивают в мерной колбе вместимостью 100 см и доводят объем дистиллированной водой до метки на колбе. При наличии мути раствор фильтруют. Хранят в склянке из темного стекла с плотной резиновой пробкой.

7.5.3.3. Раствор соляной кислоты (2:1)

340 см концентрированной соляной кислоты добавляют к 170 см дистиллированной воды.

Вместо раствора соляной кислоты можно использовать раствор серной кислоты (1:4). Для его приготовления 100 см концентрированной серной кислоты осторожно при перемешивании добавляют к 400 см дистиллированной воды.

Проверку чистоты растворов соли марганца, йодида калия (или натрия), соляной или серной кислоты и их очистку осуществляют, как описано в п.7.6.

7.5.3.4. Раствор тиосульфата натрия с концентрацией 0,02 моль/дм эквивалента

При использовании стандарт-титра его растворяют в дистиллированной воде в мерной колбе вместимостью 500 см, затем отбирают 50 см полученного раствора, переносят в мерную колбу вместимостью 500 см и доводят объем дистиллированной воды до метки.

Для приготовления раствора из навески 2,5 г NaSO·5НО переносят в мерную колбу вместимостью 500 см, растворяют в дистиллированной воде и доводят объем раствора до метки на колбе. В качестве консерванта к полученному раствору добавляют 3 см хлороформа.

Перед определением точной концентрации раствор выдерживают не менее 5 суток. Хранят в склянке из темного стекла, закрытой пробкой с вставленным в нее сифоном с бюреткой и хлоркальциевой трубкой, заполненной гранулированным KОН или NaOH.

Точную концентрацию раствора тиосульфата натрия определяют по п.7.7 не реже 1 раза в нед

7.5.3.5. Фторид калия, 40%-ный раствор

40 г фторида калия растворяют в 60 см дистиллированной воды. Хранят в полиэтиленовой посуде.

7.5.3.6. Смешанный раствор сульфата и гипохлорита натрия

50 г сульфата натрия растворяют в 160 см дистиллированной воды и добавляют такое количество раствора гипохлорита натрия, чтобы смешанный раствор содержал около 0,3% активного хлора. Раствор хранят в темной склянке в холодильнике не более 1 месяца.

При отсутствии готового раствора гипохлорита натрия его готовят из хлорной извести и карбоната натрия следующим образом: 35 г NaCО растворяют в 85 см дистиллированной воды, к 50 г хлорной извести добавляют 85 см дистиллированной воды, тщательно размешивают, добавляют весь раствор карбоната натрия и вновь перемешивают, при этом масса загустевает, затем начинает разжижаться. Массу фильтруют через фильтр "синяя лента" на воронке Бюхнера. Полученный раствор гипохлорита натрия хранят в склянке из темного стекла в холодильнике.

Для определения содержания активного хлора в растворе гипохлорита натрия в коническую колбу вместимостью 250 см вносят 50 см дистиллированной воды, 1 см раствора гипохлорита, 1 г сухого KI, 10 см раствора соляной кислоты (2:1), тщательно перемешивают, выдерживают 5 минут в темном месте и титруют стандартным раствором тиосульфата натрия до появления светло-желтого окрашивания, затем после добавления 1 см раствора крахмала - до полного обесцвечивания.

Концентрацию активного хлора вычисляют по формуле:

Где - концентрация активного хлора, %;

Концентрация тиосульфата натрия, моль/дм эквивалента;

Объем раствора тиосульфата натрия, пошедший на титрование гипохлорита натрия, см.

7.5.3.7. Смешанный раствор сульфата натрия и роданида калия

50 г сульфата натрия и 2 г роданида калия растворяют в 200 см дистиллированной воды.

7.5.3.8. Сульфаминовая кислота, 40%-ный раствор

4 г сульфаминовой кислоты растворяют в 10 см дистиллированной воды. Хранят в холодильнике.

7.6. Проверка чистоты и очистка используемых реактивов и растворов

7.6.1. Йодид калия (натрия)

Для проверки чистоты йодида калия 1 г KI растворяют в 100 см свежепрокипяченной и охлажденной до комнатной температуры дистиллированной воды, приливают 10 см раствора соляной кислоты (2:1) и 1 см раствора крахмала. Если в течение 5 минут голубая окраска не появляется, реактив пригоден для использования. В противном случае йодид калия должен быть очищен от свободного йода. Для этого 30-40 г KI помещают в воронку Бюхнера и промывают при перемешивании охлажденным до 3-5 °С этиловым спиртом до появления бесцветной порции последнего. Промытый KI сушат в темноте между листами фильтровальной бумаги в течение суток. Хранят в плотно закрытой склянке из темного стекла. Проверку чистоты и очистку NaJ* проводят аналогичным образом.

* Соответствует оригиналу. - Примечание изготовителя базы данных.

7.6.2. Раствор хлорида (сульфата) марганца

К 100 см свежепрокипяченной и охлажденной дистиллированной воды добавляют 1 см раствора соли марганца, 0,2 г сухого йодида калия (проверенного на чистоту), 5 см раствора соляной кислоты и 1 см раствора крахмала. Отсутствие через 10 мин синей окраски указывает на чистоту реактива. В противном случае для очистки раствора на каждые 100 см его добавляют около 1 г безводного карбоната натрия, хорошо перемешивают, отстаивают в течение суток, а затем фильтруют.

7.6.3. Раствор кислоты

К 50 см дистиллированной воды добавляют 1 см раствора крахмала, 1 г сухого чистого йодида калия и 10 см раствора соляной (или серной) кислоты. Если в течение 5 мин не появится синяя окраска, кислота может быть использована в анализе, в противном случае следует заменить исходный реактив.

7.7. Определение точной концентрации раствора тиосульфата натрия

В колбу для титрования вносят 80-90 см дистиллированной воды, 10 см стандартного раствора бихромата калия, добавляют 1 г сухого KI и 10 см раствора соляной кислоты. Раствор перемешивают, выдерживают 5 мин в темном месте и титруют раствором тиосульфата натрия до появления слабожелтой окраски. Затем добавляют 1 см раствора крахмала и продолжают титрование до исчезновения синей окраски.

Повторяют титрование и, если расхождение между величинами объемов титранта не более 0,05 см, за результат принимают их среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более чем на 0,05 см.

Точную концентрацию раствора тиосульфата натрия находят по формуле:

Где - концентрация раствора тиосульфата натрия, моль/дм эквивалента;

Концентрация раствора бихромата калия, моль/дм эквивалента;

Объем раствора дихромата калия, взятый для титрования, см

7.8. Устранение мешающих влияний

7.8.1. Перед определением БПК в натуральной пробе воду тщательно перемешивают. Таким образом предотвращают ошибку, вызванную изменением физических свойств грубодисперсных примесей или выпадением некоторых растворенных веществ в период между отбором пробы и ее обработкой.

7.8.2. Кислые или щелочные исследуемые воды нейтрализуют приготовленными растворами соляной кислоты или гидроксида натрия (до рН 7,0-9,0).

К пробе сточных вод прибавляют рассчитанное количество щелочи или кислоты. Требуемое количество определяют титрованием аликвотной части пробы соответствующим раствором.

7.8.3. При определении БПК очищенной сточной воды, подвергавшейся обработке хлором или хлорной известью, предварительно удаляют избыток активного хлора. При содержании хлора не более 0,5 мг/дм воде дают постоять 1-2 часа.

Воды, содержащие активный хлор более 0,5 мг/дм, перед определением обрабатывают сульфитом натрия, количество которого определяют титрованием. К 100 см пробы добавляют 10 см разбавленной серной кислоты, 10 см раствора йодистого калия и титруют раствором сульфита натрия с применением раствора крахмала в качестве индикатора (п.7.5.2.).

К пробе для определения БПК добавляют эквивалентное количество раствора сульфита натрия, рассчитанное по результату титрования. Если проба содержит активный хлор, указанную обработку повторяют. Если активный хлор полностью устранен, то пробу используют для определения БПК.

7.8.4. Если анализу подвергается сточная вода, содержащая нитриты (промышленные сточные воды или воды после биохимической очистки), то перед определением БПК нитриты разрушают, добавляя щелочной раствор йодида калия с азидом натрия. Контролируют разрушение нитритов визуально по исчезновению слаборозового окрашивания или с помощью фотоколориметра.

7.8.5. Пробы, содержащие большое количество водорослей или планктона, перед анализом фильтруют через мельничный газ (шелковое сито N 19-25). Результаты определения БПК в этих водах будут сомнительными.

8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Основные условия для получения достоверных результатов биохимического потребления кислорода - инкубация пробы при постоянной температуре 20 °С без доступа воздуха и света.

Кроме основных условий при определении необходимо соблюдать следующие правила:

проба должна быть насыщена в начале опыта кислородом (около 8 мг/дм при температуре 20 °С);

потребление кислорода во время инкубационного периода должно быть около 50% (минимальное потребление 2 мг/дм);

остаточная концентрация кислорода после срока инкубации должна быть не менее 3 мг/дм.

8.1. Выполнение измерений без разбавления пробы

Относительно чистые речные и очищенные сточные воды с содержанием до 5 мг/дм можно исследовать без разбавления.

Исследуемую воду наливают в лаборатории в бутыль не более чем на 2/3 объема, устанавливают температуру воды 20 °С (нагреванием на водяной бане или охлаждением) и сильно встряхивают для насыщения кислородом до 8 мг/дм. После этого сифоном исследуемой водой заполняют, слегка переполняя, необходимое количество кислородных колб. При определении наполняется шесть колб, при определении - шестнадцать. Предварительно каждую колбу ополаскивают приблизительно 30 см пробы. Наполненные кислородные колбы закрывают притертой пробкой так, чтобы внутри не оставалось пузырьков воздуха. В двух кислородных колбах тотчас же (не более 15 мин) определяют кислород.

Остальные колбы с испытуемой водой помещают в термостат. Можно применять специальные колбы, снабженные притертыми стеклянными колпачками. В последние наливают испытуемую воду, и они служат водяным затвором. Кислородные колбы хранят при температуре 20 °С в темноте в течение необходимого времени инкубации (при определении - в течение 5 суток, а при определении - до появления в пробе нитритов 0,1 мг/дм). Для анализа пробы на нитриты можно наполнять испытуемой водой дополнительные склянки объемом 25 см и инкубировать их в тех же условиях. Через 2, 5, 7, 10, 15, 20 и 25 суток от начала инкубации вынимают из термостата по две колбы с испытуемой водой, определяют в них растворенный кислород и содержание нитритов.

В расчете используют результат содержания растворенного кислорода в той колбе, где остаточное содержание растворенного кислорода после срока инкубации не менее 3 мг/дм и потреблено около 50% кислорода. Если это условие выполняется в обеих колбах, вычисляют средний результат из двух

8.2. Выполнение измерений с разбавлением пробы

Для загрязненных речных и сточных вод с выше 6 мг О/дм требуется предварительное разбавление пробы.

Определение производят в разбавленной пробе по разности содержания кислорода до и после инкубации в стандартных условиях.

Для разбавления пробы применяют искусственно приготовленную разбавляющую воду (п.7.5).

При приготовлении разбавлений температура исследуемой пробы должна соответствовать температуре 18-20 °С.

Для расчета необходимых разбавлений пробы следует ожидаемое содержание БПК в пробе разделить на 4-5 (поскольку в воде после инкубации при правильном разбавлении должно остаться 4-5 мг/дм кислорода). Если нельзя предположить ожидаемое БПК, необходимое разбавление рассчитывается по результатам определения бихроматной окисляемости (ХПК). Условно принимают биохимическое потребление кислорода 50% ХПК, а поскольку в воде после инкубации должно остаться 4-5 мг/дм кислорода, вычисленное значение (ХПК:2) делят на 4 или 5. Полученный результат показывает, во сколько раз надо разбавить анализируемую воду.

Пробы, для которых нельзя примерно рассчитать величину БПК, берут в двух и более разбавлениях. Результаты, полученные при анализе проб с различным разбавлением, не должны быть одинаковыми. Наиболее достоверным является результат определения, при котором израсходовано около 50% первоначально содержащегося кислорода. При определении БПК в воде, содержащей большое количество промышленных сточных вод, могут возрастать значения БПК с увеличением степени разведения. В этих случаях берут максимальное значение БПК, которое получено при наибольшем разведении.

В мерную колбу вместимостью 1 дм наливают хорошо перемешанную испытуемую жидкость, отбирают пипеткой определенный объем и вносят в другую колбу (цилиндром отмеряются объемы больше 50 см). Затем доливают до метки разбавляющей водой и хорошо перемешивают; полученную смесь сифоном, опущенным до дна колбы, наливают в шесть (если определяется ) или 16 (если определяется ) кислородные колбы объемом 250 см, закрывают пробкой, следя за тем, чтобы внутри не осталось пузырьков воздуха. Затем оставшейся смесью заполняют колпачки от колб и, наклонив колбу, вставляют их в колпачки с водой, вытесняя из них воду, чтобы не осталось пузырьков воздуха. Для каждого разбавления заполняют две колбы.

В первых двух кислородных колбах немедленно определяют кислород. Все остальные колбы (4 при определении и 10-14 при определении ) помещают в термостат при 20 °С для инкубации.

Через 2, 5, 7, 10, 15, 20 и 25 суток от начала инкубации вынимают из термостата по две колбы с испытуемой водой, определяют в них растворенный кислород и содержание нитритов. Нитриты определяют в воде, налитой в колпачок колбы, который снимают так же, как надевали.

Если в пробе начался процесс нитрификации (что определяют по образованию нитритов в концентрации, превышающей 0,1 мг/дм), определение БПК полное считают законченным. При появлении на пятые сутки следов нитритов следующее определение проводят через 5-8 суток. При отсутствии в лаборатории колб с пришлифованными стеклянными колпачками для контроля процесса нитрификации в термостат можно ставить дополнительно наполненные испытуемой и разбавляющей водой 12 неградуированных склянок объемом 25 см и в них определять содержание нитритов по истечению установленного срока инкубации. Наиболее точным считается определение БПК в пробах, где нитрификация только началась.

9. РАСЧЕТ РЕЗУЛЬТАТОВ ОПРЕДЕЛЕНИЯ

9.1. Расчет БПК при определении без разбавления пробы

Где - величина , мг/дм кислорода;

Содержание растворенного кислорода до инкубации, мг/дм;

То же, после инкубации, мг/дм

9.2. Расчет БПК при определении с разбавлением пробы

Где - величина БПК, мг О/дм;

Содержание растворенного кислорода в исследуемой воде до инкубации, мг/дм;

То же, после инкубации, мг/дм;

Содержание растворенного кислорода в разбавляющей воде до инкубации, мг/дм;

То же, после инкубации, мг/дм:

Величина разбав

9.3. За результат анализа принимают среднее арифметическое значение двух параллельных определений и

для которых выполняется следующее условие:

Где - предел повторяемости, значения которого приведены в таблицах 3 и 4.

Таблица 3

Значения пределов повторяемости при определении растворенного кислорода йодометрическим методом (0,95)

Таблица 4

Значения пределов повторяемости при определении растворенного кислорода амперометрическим методом с БПК-тестером (0,95)

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6 .

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблицах 5 и 6.

Таблица 5

Значения пределов воспроизводимости при определении растворенного кислорода йодометрическим методом (0,95)

Таблица 6

Значения пределов воспроизводимости при определении растворенного кислорода амперометрическим методом с БПК-тестером (0,95)

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6 .

10. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ РАСТВОРЕННОГО КИСЛОРОДА

10.1. Определение содержания растворенного кислорода в диапазоне от 0,1 до 15,0 мг/дм йодометрическим методом

Принцип метода. Йодометрический метод определения концентрации растворенного кислорода основан на его реакции с гидроксидом марганца (II) и определении образовавшихся более окисленных соединений марганца последующим йодометрическим титрованием. Реактивы и приготовление необходимых растворов по п.3. и п.7.5.3.

Определение растворенного кислорода в пробах на БПК, при отсутствии в исследуемой воде восстановителей.

Вынув из колбы с исследуемой водой (объем 250 см) притертую пробку, фиксируют растворенный кислород, для чего в колбу вводят отдельными пипетками 2 см раствора хлорида (сульфата) марганца и 2 см щелочного раствора йодида калия. Пипетку погружают каждый раз до половины колбы и по мере выливания раствора поднимают вверх. Затем быстро закрывают колбу стеклянной пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха и содержимое тщательно перемешивают 15-20-кратным переворачиванием колбы до равномерного распределения осадка в воде. Из колбы при добавлении реактивов выливается 4 см испытуемой воды, на эту потерю при расчете вводят соответствующую поправку.

Колбы с зафиксированными пробами помещают в темное место для отстаивания (не менее 10 мин и не более 24 ч).

После того как отстоявшийся осадок будет занимать менее половины высоты колбы, к пробе приливают 10 см раствора соляной кислоты (раствор 2:1), или 4 см раствора серной кислоты (п.7.5.3.3.)*, погружая при этом пипетку до осадка (не взмучивать) и медленно поднимая ее вверх по мере опорожнения. Вытеснение из колбы части прозрачной жидкости для анализа значения не имеет.

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

Колбу закрывают пробкой и содержимое тщательно перемешивают.

Для титрования используют весь объем воды в калиброванной склянке БПК* (пипетку предварительно ополаскивают этим раствором), переносят его в колбу для титрования и титруют стандартным раствором тиосульфата натрия (если предполагаются, что содержание кислорода менее 3 мг/дм - из микробюретки) до тех пор, пока он не станет светло-желтым.

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

Затем прибавляют 1 см свежеприготовленного раствора крахмала и продолжают титрование до исчезновения синей окраски.

Обработка результатов измерений

Массовую концентрацию растворенного в воде кислорода находят по формуле:

Где - массовая концентрация растворенного кислорода в анализируемой пробе воды, мг/дм;

Концентрация раствора тиосульфата натрия, моль/дм эквивалента;

Объем раствора тиосульфата натрия, пошедший на титрование, см;

Вместимость кислородной колбы, см;

Суммарный объем растворов хлорида марганца и йодида калия, добавленных в колбу при фиксации растворенного кислорода, см;

Масса миллиграмм-эквивалента кислорода, мг.

Определение растворенного кислорода в пробах на в присутствии в исследуемой воде восстановителей.

В присутствии восстановителей последовательность анализа изменяется. В колбу с исследуемой водой добавляют 1 см раствора соляной кислоты и 1 см смешанного раствора гипохлорита и сульфата натрия. Колбу закрывают пробкой, перемешивают и оставляют в темном месте. Через 30 минут для устранения избытка непрореагировавшего гипохлорита добавляют 2 см смешанного раствора роданида калия и сульфата натрия. Пробу перемешивают и через 10 минут выполняют фиксацию и определение кислорода.

При содержании в анализируемой воде более 1 мг/дм железа в пробу перед добавлением раствора кислоты следует внести 1 см раствора фторида калия. Добавление всех растворов в колбу с пробой осуществляют, погружая пипетку примерно до половины колбы и поднимая ее вверх по мере выливания раствора. В этом случае при определении содержания кислорода вычитают из емкости колбы не 4 см, а сумму объемов всех прибавленных реактивов.

10.2. Определение содержания растворенного кислорода в диапазоне от 0,1 мг/дм до 10,0 мг/дм амперометрическим методом

Принцип метода. Действие преобразователя концентрации кислорода основано на электрохимическом восстановлении кислорода, диффундирующего на его катод через селективнопропускающую мембрану (мембрана непроницаема для воды и растворенных веществ, но пропускает кислород, а также некоторое количество других газов).

Генерируемый при этом электрический ток пропорционален концентрации кислорода в анализируемой воде. Показания стрелки прибора соответствуют массовой концентрации кислорода в анализируемой воде.

Изменения растворимости кислорода при различных температурах и атмосферном давлении пересчитываются по таблицам. Некоторые приборы компенсируют изменения растворимости кислорода в зависимости от температуры и атмосферного давления автоматически.

Для измерения растворенного кислорода при определении БПК пригодны различные модификации БПК-тестеров и оксиметров, позволяющих воспроизводить метрологические характеристики, приведенные в табл.2.

Выполнение измерений. Выполняя измерение следует руководствоваться инструкцией по эксплуатации прибора.

При использовании БПК-тестера для инкубирования проб исследуемой воды используются кислородные колбы с тефлоновыми прокладками в крышках и переливную вставку, входящие в комплект. Переливная вставка обеспечивает сбор переливающейся из колбы воды при измерениях растворенного кислорода.

При использовании оксиметров любой марки требуется подобрать кислородные колбы с притертыми пробками, в горлышко которых свободно входит электрохимический датчик кислорода и чашки Петри, которые применяются как переливные подставки.

Кислородную колбу с исследуемой пробой открывают, одевают на нее переливную вставку (если она прикладывается к комплекту) или ставят колбу на чистую чашку Петри, опускают в колбу магнитный стержень в стеклянном корпусе, ставят чашку Петри с кислородной колбой на магнитную мешалку и обеспечивают скорость вращения стержня, указанную в инструкции, но не менее 5 см/сек. Вставляют в горло колбы электрохимический датчик кислорода и через 3 минуты записывают показания прибора. Результаты выражаются в мг О/дм с точностью до первого десятичного знака.

После того как измерение кислорода произведено, датчик кислорода вынимают из кислородной колбы, снимают переливную вставку и из нее или из чашки Петри пипеткой отбирается перелившаяся в процессе измерения исследуемая вода и ею дополняется кислородная колба доверху без пузырей воздуха (если колбу нельзя наполнить доверху перелившейся исследуемой водой, то можно добавлять несколько капель стерильной дистиллированной воды), после чего колба закрывается крышкой и ставится в термостат для дальнейшей инкубации.

Повторное измерение концентрации кислорода в одной и той же колбе повышает достоверность измерений и позволяет уменьшить количество инкубируемых кислородных колб.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АНАЛИЗА

Результат анализа в документах, предусматривающих его использование, может быть представлен в виде: , 0,95,

где - показатель точности методики.

Значение рассчитывают по формуле: . Значение приведено в таблице 1 и 2.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: , 0,95, при условии ,

где - результат анализа, полученный в соответствии с прописью методики;

Значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

  • количество результатов параллельных определений, использованных для расчета результата анализа;
  • способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

12. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

  • оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
  • контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

12.1. Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

12.1.1. Этот вид контроля предназначен для выявления несоответствия условий выполнения текущих измерений требованиям МВИ.

Оперативный контроль измерительной процедуры применяется в случае получения сомнительных результатов КХА (например, при грубом несоответствии значений ХПК и БПК пробы), а также периодически для проверки разбавляющей воды, чистоты применяемых посуды и реактивов, микробной затравки и самого метода анализа.

12.1.2. Средствами оперативного контроля являются ГСО глюкозоглютаминовой кислоты или приготовленный раствор глюкозоглютаминовой кислоты.

Для приготовления раствора необходимо использовать обезвоженную D(+) глюкозу и L(-) глютаминовую кислоту, для чего эти вещества высушивают в сушильном шкафу при температуре 103-105 °С в течение 1 часа. Затем 75 мг глюкозы и 75 мг глютаминовой кислоты растворяют в 0,3 дм дистиллированной воды, перемешивают и доводят до 0,5 дм. Раствор не хранится.

12.1.3. При проведении оперативного контроля 5 см глюкозоглютаминовой смеси доводят до 1 дм разбавляющей водой (п.7.5.1.)* и проводят определение в этой пробе в точном соответствии с прописью методики.

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

Результат измеренного умножается на коэффициент разбавления 100, т.к. анализируемая концентрация глюкозоглютаминовой смеси составляет 150 мг/дм*. Если результат анализа контрольной пробы составляет 205±25 мг/дм, считают условия выполнения измерений соответствующими требованиям МВИ.

________________

* Внесены дополнения и изменения согласно протоколу N 23 заседания НТК ФГУ "ЦЭКА" МПР России от 30 мая 2001 г.

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры с нормативом контроля .

Результат контрольной процедуры рассчитывают по формуле:

Где - результат анализа массовой концентрации БПК в образце для контроля - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 9.3;

Аттестованное значение образца для контроля.

Норматив контроля рассчитывают по формуле:

Где - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной при выполнении условия:

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПО СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО N 224.01.02.042/2004

-дней инкубации ( ) в поверхностных пресных, подземных (грунтовых), питьевых, сточных и очищенных сточных водах иодометрическим методом,

разработанная

Диапазон измерений,
мг О/дм

Показатель точности (границы относительной погрешности при вероятности 0,95), , %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), , %

от 0,5 до 5,0 вкл.

св. 5,0 до 100 вкл.

св. 100 до 300 вкл.

4. Дата выдачи свидетельства 02.02.2004 г.

СВИДЕТЕЛЬСТВО N 224.01.02.049/2004

об аттестации методики выполнения измерений

Методика выполнения измерений биохимического потребления кислорода после -дней инкубации ( ) в поверхностных пресных, подземных (грунтовых), питьевых, сточных и очищенных сточных водах амперометрическим методом с БПК-тестером,

разработанная ФГУ "Центр экологического контроля и анализа" МПР России (г.Москва),

аттестована в соответствии с ГОСТ Р 8.563-96.

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики выполнения измерений.

В результате аттестации установлено, что методика соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

1. Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

2. Диапазон измерений, значения пределов повторяемости и воспроизводимости при вероятности 0,95

3. При реализации методики в лаборатории обеспечивают:

Оперативный контроль процедуры измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм оперативного контроля процедуры измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству лаборатории.

Введение

В воде источников водоснабжения обнаружено несколько тысяч органических веществ разных химических классов и групп. Органические соединения природного происхождения (гуминовые вещества, различные амины и другие) - способны изменять органолептические свойства воды, и по этой причине они должны быть удалены в процессе водоподготовки.

Несомненно, что органические вещества техногенного происхождения при поступлении их с питьевой водой могут неблагоприятно действовать на организм. Аналитический контроль их содержания в питьевой воде затруднен не только ввиду громадного их числа, но и вследствие того, что многие из них весьма неустойчивы и в воде происходит их непрерывная трансформация. Поэтому при аналитическом контроле невозможно идентифицировать все органические соединения, присутствующие в питьевой воде.

Однако многие органические вещества обладают выраженными органолептическими свойствами (запахом, вкусом, цветом, способностью к пенообразованию), что позволяет их выявить и ограничить их содержание в питьевой воде. Примерами таких веществ являются: синтетические поверхностно-активные вещества (СПАВ), в незначительных (нетоксических) концентрациях образующие пену; фенолы, придающие воде специфический запах; многие фосфорорганические соединения.

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.

БПК и ХПК

Интегральное содержание органических веществ оценивается по показателям БПК и ХПК.

Биохимическое и химическое потребление кислорода - БПК и ХПК , принятые в гигиене, гидрохимии и экологии, интегральные показатели, характеризующие содержание в воде нестабильных (неконсервативных) органических веществ, трансформирующихся в воде путем гидролиза, окисления и других процессов. Содержание таких веществ выражается через количество кислорода, необходимое для их окисления в резко кислой среде перманганатом (БПК) или бихроматом (ХПК). К таким веществам относят алифатические кислоты, некоторые эфиры, амины, спирты.

В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием CO 2 . При этом на окисление потребляется растворенный в воде кислород (РК). В водоемах с большим содержанием органических веществ большая часть кислородапотребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. Поэтому увеличивается количество организмов, более устойчивых к низкому содержанию кислорода, исчезают кислородолюбивые виды. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

БПК - это количество кислорода в (мг), требуемое для окисления находящихся в 1 литре воды органических вещества в аэробных условиях, без доступа света, при 20 °С, за определённый период в результате протекающих в воде биохимических процессов.

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (то есть в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК 5). Может определяться также БПК 10 за 10 суток и БПК полн. за 20 суток (при этом окисляется около 90 % и 99 % органических веществ соответственно). Ориентировочно принимают, что БПК 5 составляет около 70 % БПК полн. , но может составлять от 10 % до 90 % в зависимости от окисляющегося вещества. Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света.

В поверхностных водах величина БПК 5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК 5 природных водоемов при загрязнении сточными водами.

Таблица 1. Величины БПК 5 в водоемах с различной степенью загрязненности

Норматив на БПК полн. не должен превышать: для водоемов хозяйственно-питьевого водопользования - 3 мг/л для водоемов культурно-бытового водопользования - 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК 5 для тех же водоемов, равные 2 мг/л и 4 мг/л.

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью или ХПК . Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая.

Являясь интегральным (суммарным) показате­лем, ХПК в настоящее время считается одним из наиболее инфор­мативных показателей антропогенного загрязнения вод. Этот по­казатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в милли­граммах потребленного кислорода на 1 литр воды (мгО/л).

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость ; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм 3 .

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и (в том числе, и степени их очистки), а также поверхностного стока.

Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности

Однако не все органические вещества в равной степени уча­ствуют в реакции химического окисления. Так же, как и при биохи­мическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК. Мешают точному определению ХПК в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку.

Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПК – 15 мгО/л.

ХПК и БПК – одни из важных показателей уровня загрязнённости сточных вод предприятий органическими соединениями.

ХПК - показатель химического потребления кислорода.

БПК – показатель биохимического потребления кислорода.

От чего зависит уровень ХПК и БПК воды?

Даже в чистой природной воде всегда присутствуют органические вещества. Но их может содержаться мало (например, в воде из родника), а при неблагоприятных условиях их количество может быть и очень высоким. Природными источниками органических веществ в воде являются останки животных, погибшие растения (как жившие в воде, так и попавшие в водоем по воздуху, с берега). Вода также загрязняется органическими веществами человеком, их источниками являются сельскохозяйственные стоки, транспортные предприятия, предприятия разных видов промышленности, полигоны ТБО и несанкционированные свалки мусора. Органические загрязнения попадают в водоем преимущественно со сточными и дождевыми водами, смываются с почвы.

Чем опасны высокие уровни ХПК и БПК?

В естественных природных условиях находящиеся в воде органические вещества разрушаются бактериями (происходит аэробное биохимическое окисление с образованием двуокиси углерода). При этом на окисление расходуется растворенный в воде кислород. Если в водоёме высоко содержание органических веществ, большая часть растворенного в воде кислорода потребляется на биохимическое окисление, лишив таким образом кислорода другие организмы (например, рыб).

Чем отличаются ХПК и БПК?

Согласно ГОСТ 17403-72, ПДК по ХПК для водоемов и водотоков в местах хозяйственно-питьевого водопользования составляет не более 15 мг О2/л, в местах коммунально-бытового водопользования - не более 30 мг О2/л.

ХПК – химическое потребление кислорода,

то есть количество кислорода, потребленное при химическом окислении содержащихся в воде органических веществ до неорганических продуктов под действием окислителей.

Для источников централизованного хозяйственно-питьевого водоснабжения, согласно ГОСТ 17.1.3.03-77 и рыбохозяйственных водоемов, БПКполн не должно превышать 3 мг О2/л.


БПК измеряется в двух показателях:
БПКполное (БПК20) и БПК5.

БПК – биохимическое потребление кислорода, то есть количество кислорода, израсходованное за определенное время (за 5 суток - БПК5) в аэробных условиях на окисление органических веществ, содержащихся в единице объема воды. Как правило, в течение 5 суток при нормальных условиях происходит окисление до 70% легкоокисляющихся органических веществ.

Полное окисление органических веществ БПКполное или БПК20 достигается в течение 20 суток.

Важнейшими показателями степени загрязненности отработанных вод являются ХПК и БПК 5 (параметры химического и биохимического потребления О2). Их идентифицируют как при анализе бытовых сточных вод, так и в ходе исследований промышленных. Во втором случае показатели будут существенно выше.
Если определение БПК 5 показало повышение уровня, это означает, что в отработанных (естественных) водах присутствует большой объем органических соединений. Зачем измерять биохимическое потребление кислорода БПК 5 и ХПК, на что указывают эти параметры, и какие нормы установлены - эти и другие вопросы имеет смысл рассмотреть.

Почему увеличивается показатель БПК 5 и ХПК?

Выше было определено, что увеличение БПК 5 в сточных водах - это показатель повышенного содержания органики. Попадая в почву, загрязненная субстанция заражает подземные воды, грунт, что негативно сказывается на окружающей среде. К повышению БПК 5 в воде определенного района могут привести и:

  • свалки ТБО;
  • несанкционированные места сброса токсичного и бытового мусора;
  • открытие транспортных организаций;
  • организация сельскохозяйственных угодий, ферм и пр.

При расчете БПК 5 единица измерения израсходованного кислорода - миллиграммы О2/л.

Чем грозит увеличение БПК 5 ПКД?

Даже в естественных источниках и водоемах содержится определенный процент органических соединений - останки животного происхождения, погибшие растения и т.д. Их разрушение (естественная очистка субстанции) осуществляется бактериями. Процесс носит название анаэробного биохимического окисления. Его результатом становится выделение двуокиси углерода. При этом окисление проходит с участием растворенного в жидкости О2. Чем больше органических включений, тем больше кислорода необходимо на их переработку. Поэтому превышение показателя БПК 5 в 40 раз, например, будет указывать на высокую загрязненность субстанции - уровень кислорода резко снижается, что приводит непригодности воды. Нормативы содержания О2 в питьевой воде -9-11 мг/л при температуре +220С.

Что такое БПК полное и БПК 5?

При анализе сточных вод различают БПК 5 и БПК полное - отличие этих двух параметров заключается в сроках. Показатель с коэффициентом 5 указывает на то, что в ходе исследования определяли объем растворенного кислорода, который был израсходован на анаэробную переработку органических соединений за 5 суток. В отличие от БПК 5 параметр с приставкой «полное» показывает, какой объем О2 ушел на переработку органики за 20 суток. Часто этот показатель записывают как БПК 20. Считается, что в течение 5 дней при температуре 200С выполняется окисление 70% органических включений. Полное же их окисление проходит за 20 суток. Отсюда и названия. При необходимости эксперты используют перевод БПК 5 в БПК полное по формуле: БПКпол.=БПК5*1.33.

Нормы и методика измерения БПК 5

Если исследованию подлежат производственные или промышленные (большое содержание трудно разлагаемых веществ) сточные води, то перевод БПК 5 в полный показатель не применяется. После взятия пробы проводится ее инкубация в течение 5 и 20 (для промышленных сточных вод 120 суток). Затем выполняет замер. Пробы берется ежедневно в течение установленного времени. Если в сточных водах (как правило, это хозяйственно-бытовые) находится легкоразлагаемая органические вещества, тогда задействуют коэффициент пересчета БПК 5 в БПК полное равный, как указано в формуле, 1.33.

Полученные результаты сверяют с нормой. Для БПК 5 норматив определен ГОСТ 2761-84. В нем оговорено, что для источников питьевой (централизованные) субстанции показатель должен быть равен не более 2 мгО2/л, рыбохозяйств и водоемов культурно-бытового значение - не более 3.5-4 мгО2/л. Чтобы поддерживать в допустимых рамках показатель БПК, поддерживают соотношение ХПК к БПК 5 в хозбытовых стоках в диапазоне 0.4-0.75. Оптимальным считается значение 0.7. При таком соотношении между показателями процесс анаэробной очистки проходят оптимально и в полном объеме.



Похожие статьи