Проблема решения и чисто математических. Математика, которая мне нравится. Итак, вы готовы узнать о математических загадках

  1. 1 Murad :

    Мы равенство Zn = Xn + Yn считали Диофанта уравнение или великой теоремой Ферма, а это есть решение уравнения (Zn- Xn) Xn = (Zn – Yn) Yn. Тогда Zn =-(Xn + Yn) есть решение уравнения (Zn + Xn) Xn = (Zn + Yn) Yn. Эти уравнения и решения связаны со свойствами целых чисел и действия над ними. Значит, не знаем свойства целых чисел?! Обладая такими ограниченными знаниями не раскроем истину.
    Рассмотрим решения Zn = +(Xn + Yn) и Zn =-(Xn + Yn), когда n = 1. Целые числа + Z образуются с помощью 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Они делиться на 2 целые числа +X – четные, последние правые цифры: 0, 2, 4, 6, 8 и +Y – нечетные, последние правые цифры: 1, 3, 5, 7, 9, т.е. + X = + Y. Количество Y = 5 – нечетных и X = 5 – четных чисел равно: Z = 10. Удовлетворяет уравнению: (Z – X) X = (Z – Y) Y, а решение +Z = +X + Y= +(X + Y).
    Целые числа -Z состоят из объединения -X – четные и -Y – нечетные, и удовлетворяет уравнению:
    (Z + X) X = (Z + Y) Y, а решение -Z = – X – Y = – (X + Y).
    Если Z/X = Y или Z / Y = X, то Z = XY; Z / -X = -Y или Z / -Y = -X, то Z = (-X)(-Y). Деление проверяется умножением.
    Однозначные положительные и отрицательные числа состоят из 5 нечетных и 5 нечетных чисел.
    Рассмотрим случай n = 2. Тогда Z2 = X2 + Y2 является решения уравнения (Z2 – X2) X2 = (Z2 – Y2) Y2 и Z2 = -(X2 + Y2) есть решение уравнения (Z2 + X2) X2 = (Z2 + Y2) Y2. Мы Z2 = X2 + Y2 считали теоремой Пифагора и тогда решение Z2 = -(X2 + Y2) является этой же теоремой. Знаем, что диагональ квадрата делить его на 2 части, где диагональ является гипотенузой. Тогда справедливы равенства: Z2 = X2 + Y2, и Z2 = -(X2 + Y2) где X и Y катеты. И еще решения R2 = X2 + Y2 и R2 =- (X2 + Y2) являются круги, центры являются началом квадратной системы координат и с радиусом R. Их можно записать в виде (5n)2 = (3n)2 + (4n)2 , где n – целые положительные и отрицательные, и являются 3 последовательные числа. Также решениями являются 2-разрядные числа XY, которые начинается с 00 и заканчивается 99 и есть 102 =10х10 и считать 1 век = 100 годов.
    Рассмотрим решения, когда n = 3. Тогда Z3 = X3 + Y3 решения уравнения (Z3 – X3) X3 = (Z3 – Y3) Y3.
    3 -разрядные числа XYZ начинается с 000 и заканчивается 999 и есть 103 =10х10х10 =1000 годов=10веков
    Из 1000 кубиков одинакового размера и цвета можно составить рубик порядка 10. Рассмотрим рубик порядка +103=+1000 – красный и -103=-1000 – синий. Они состоят из 103= 1000 кубиков. Если разложим, и кубики поставить в один ряд или друг на друга, без промежутков, то получим горизонтальный или вертикальный отрезок длины 2000. Рубик – большой куб, покрыто маленькими кубами, начиная с размера 1бутто = 10ст.-21, и в него нельзя добавить или убавить одного куба.
    - (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9+10); + (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9+10);
    - (12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92+102); + (12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92+102);
    - (13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93+103); + (13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93+103).
    Каждое целое число 1. Сложить 1(единицы) 9 + 9 =18, 10 + 9 =19, 10 +10 =20, 11 +10 =21, а произведения:
    111111111 х 111111111= 12345678987654321; 1111111111 х 111111111= 123456789987654321.
    0111111111х1111111110= 0123456789876543210; 01111111111х1111111110= 01234567899876543210.
    Эти операции можно выполнить 20-разрядных калькуляторах.
    Известно, что +(n3 – n) всегда делится на +6, а – (n3 – n) делится на -6. Знаем, что n3 – n = (n-1)n(n+1). Это есть 3 последовательные числа (n-1)n(n+1), где n – четное, то делится на 2, (n-1) и (n+1) нечетные, делятся на 3. Тогда (n-1)n(n+1) всегда делится на 6. Если n=0, то (n-1)n(n+1)=(-1)0(+1), n=20, то(n-1)n(n+1)=(19)(20)(21).
    Знаем, что 19 х 19 = 361. Это означает, что одного квадрата окружают 360 квадратов и тогда одного куба окружают 360 кубов. Выполняется равенство: 6 n – 1 + 6n. Если n=60, то 360 – 1 + 360, а n=61, то 366 – 1 + 366.
    Из вышеуказанных утверждений вытекают обобщения:
    n5 – 4n = (n2-4) n (n2+4); n7 – 9n = (n3-9) n (n3+9); n9 –16 n= (n4-16) n (n4+16);
    0… (n-9) (n-8) (n-7) (n-6) (n-5) (n-4) (n-3) (n-2) (n-1)n(n+1) (n+2) (n+3) (n+4) (n+5) (n+6) (n+7) (n+8) (n+9)…2n
    (n+1) х (n+1) = 0123… (n-3) (n-2) (n-1) n (n+1) n (n-1) (n-2) (n-3)…3210
    n! = 0123… (n-3) (n-2) (n-1) n; n! = n (n-1) (n-2) (n-3)…3210; (n+1)! = n! (n +1).
    0 +1 +2+3+…+ (n-3) + (n-2) + (n-1) +n=n (n+1)/2; n + (n-1) + (n-2) + (n-3) +…+3+2+1+0=n (n+1)/2;
    n (n+1)/2 + (n+1) + n (n+1)/2 = n (n+1) + (n+1) = (n+1) (n+1) = (n+1)2.
    Если 0123… (n-3) (n-2) (n-1) n (n+1) n (n-1) (n-2) (n-3)…3210 х 11=
    = 013… (2n-5) (2n-3) (2n-1) (2n+1) (2n+1) (2n-1) (2n-3) (2n-5)…310.
    Любое целое число n есть степени 10, имеет: – n и +n, +1/ n и -1/ n, нечетное и четное:
    - (n + n +…+ n) =-n2; – (n x n x…x n) = -nn; – (1/n + 1/n +…+ 1/n) = – 1; – (1/n x 1/n x…x1/n) = -n-n;
    + (n + n +…+ n) =+n2; + (n x n x…x n) = + nn; + (1/n +…+1/n) = + 1; + (1/n x 1/n x…x1/n) = + n-n.
    Ясно, что если любое целое число сложить само себя, то увеличиться в 2 раза, а произведение будет квадратом: X = a, Y = a, X+Y = a +a = 2a; XY = a x a =a2. Это считали теоремой Виета – ошибка!
    Если в данное число добавить и отнять число b, то сумма не меняется, а произведение меняется, например:
    X = a + b, Y =a – b, X+Y = a + b + a – b = 2a; XY = (a + b) x (a –b) = a2- b2.
    X = a +√b , Y = a -√b , X+Y = a +√b + a – √b = 2a; XY = (a +√b) x (a -√b) = a2- b.
    X = a + bi, Y =a – bi, X+Y = a + bi + a – bi = 2a; XY = (a + bi) x (a –bi) = a2+ b2.
    X = a +√b i, Y = a – √bi, X+Y = a +√bi+ a – √bi =2a, XY = (a -√bi) x (a -√bi) = a2+b.
    Если вместо букв a и b поставить целые числа, то получим парадоксы, абсурды, и недоверия математике.

Иногда усердное изучение точных наук может принести свои плоды - вы станете не только известны на весь мир, но и богаты. Награды даются, впрочем, не за что попало, и в современной науке очень много недоказанных теорий, теорем и задач, которые плодятся по мере развития наук, взять хотя бы Коуровские или Днестровские тетради, этакие сборники с неразрешимыми физико-математическими, и не только, задачами. Однако есть и поистине сложные теоремы, которые не могут разгадать уже не один десяток лет, и вот за них то и выставлена награда американским институтом Клэя в размере 1 млн. долларов США за каждую. До 2002 года общий джекпот равнялся 7 миллионам, так как «задач тысячелетия» было семь, однако российский математик Григорий Перельман решил гипотезу Пуанкаре, эпически отказавшись от миллиона, даже не открыв дверь математикам США, которые хотели вручить ему его честно заработанные премиальные. Итак, включаем Теорию Большого Взрыва для фона и настроения, и смотрим, за что еще можно срубить круглую сумму.

Равенство классов P и NP

Простыми словами говоря, проблема равенства P = NP состоит в следующем: если положительный ответ на какой-то вопрос можно довольно быстро проверить (за полиномиальное время), то правда ли, что ответ на этот вопрос можно довольно быстро найти (также за полиномиальное время и используя полиномиальную память)? Другими словами, действительно ли решение задачи проверить не легче, чем его отыскать? Суть здесь в том, что некоторые расчеты и вычисления легче решать по алгоритму, а не вычислять перебором, и таким образом экономить кучу времени и ресурсов.

Гипотеза Ходжа

Гипотеза Ходжа сформулирована в 1941 году и состоит в том, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, так называемые циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

Здесь объясняя простыми словами можно сказать следующее: в 20 веке были открыты очень сложные геометрические формы, типа искривленных бутылок. Так вот, было высказано предположение, что чтобы сконструировать эти объекты для описания, надо применять совсем головоломные формы, которые не имеют геометрической сути «этакие страшные многомерные каляки-маляки» или же все - таки можно обойтись условно-стандартной алгеброй+геометрией.

Гипотеза Римана

Здесь человеческим языком объяснить довольно сложно, достаточно знать, что решение данной проблемы будет иметь далеко идущие последствия в области распределения простых чисел. Проблема настолько важна и насущна, что даже выведение контрпримера гипотезы - на усмотрение ученого совета университета, проблему можно будет считать доказанной, так что здесь можно попробовать и метод «от обратного». Даже если удастся переформулировать гипотезу в более узком смысле - и тут институт Клэя выплатит некоторую сумму денег.

Теория Янга — Миллса

Физика элементарных частиц - один из любимых разделов доктора Шелдона Купера. Тут квантовая теория двух умных дядек говорит нам о том, что для любой простой калибровочной группе в пространстве существует дефект массы отличный от нулевого. Это утверждение установлено экспериментальными данными и численному моделированию, однако доказать его пока никто не может.

Уравнения Навье-Стокса

Здесь нам наверняка бы помог Говард Воловиц, если бы существовал в реальности - ведь это загадка из гидродинамики, причем основа основ. Уравнения описывают движения вязкой ньютоновской жидкости, имеют огромное практическое значение, а главное описывают турбулентность, которую никак не удается загнать в рамки науки и предугадать ее свойства и действия. Обоснование построения этих уравнений позволило бы не тыкать пальцем в небо, а понять турбулентность изнутри и сделать самолеты и механизмы более устойчивыми.

Гипотеза Бёрча — Свиннертон-Дайера

Здесь я, правда, пытался подобрать простые слова, однако тут такая дремучая алгебра, что без глубокого погружения не обойтись. Тем же, кто не хочет нырять с аквалангом в матан, надо знать, что данная гипотеза позволяет быстро и безболезненно находить ранг эллиптических кривых, а если бы этой гипотезы не было, то для вычисления этого ранга нужна была бы простыня вычислений. Ну и естественно также надо знать, что доказательство этой гипотезы обогатит вас на миллион долларов.

Нельзя не отметить, что почти в каждой области есть уже продвижения, и даже доказаны случаи для отдельных примеров. Поэтому не стоит медлить, а то получится как с теоремой Ферма, которая поддалась Эндрю Уайлсу через 3 с лишним века в 1994 году, и принесла ему Абелевскую премию и около 6 млн. норвежских крон (50 миллионов рублей по сегодняшнему курсу).

Лев Валентинович Руди, автор статьи «Пьер Ферма и его «недоказуемая» теорема»,прочитав публикацию об одном из 100 гениев современности математике , который был назван гением благодаря своему решению теоремы Ферма, предложил опубликовать свое альтернативное мнение на эту тему. На что мы охотно откликнулись и публикуем его статью без сокращений.

Пьер Ферма и его «недоказуемая» теорема

В этом году исполнилось 410 лет со дня рождения великого французского математика Пьера Ферма. Академик В.М. Тихомиров пишет о П. Ферма: «Лишь один математик удостоился того, что имя его стало нарицательным. Если говорят «ферматист», значит, речь идет о человеке, одержимом до безумия какой-то несбыточной идеей. Но это слово не может быть отнесено к самому Пьеру Ферма (1601-1665), одному из самых светлых умов Франции.

П. Ферма - человек удивительной судьбы: один из величайших математиков мира, он не был «профессиональным» математиком. По профессии Ферма был юристом. Он получил великолепное образование и был выдающимся знатоком искусства и литературы. Всю жизнь он проработал на государственной службе, последние 17 лет был советником парламента в Тулузе. К математике его влекла бескорыстная и возвышенная любовь, и именно эта наука дала ему все, что может дать человеку любовь: упоение красотой, наслаждение и счастье.

В бумагах и переписке Ферма сформулировал немало красивых утверждений, о которых он писал, что располагает их доказательством. И постепенно таких недоказанных утверждений становилось все меньше и, наконец, осталось только одно - его загадочная Великая теорема!

Однако, тем, кто интересуется математикой, имя Ферма говорит о многом независимо от его Великой теоремы. Он был одним из самых проницательных умов своего времени, его считают основоположником теории чисел, он внес огромный вклад в развитие аналитической геометрии, математического анализа. Мы признательны Ферма за то, что он приоткрыл для нас мир, полный красоты и загадочности» (nature.web.ru:8001›db/msg.html…).

Странная, однако, «признательность»!? Математический мир и просвещенное человечество проигнорировали 410-й юбилей Ферма. Все было, как всегда, тихо, мирно, буднично... Не было слышно фанфар, хвалебных речей, тостов. Из всех математиков мира только Ферма «удостоился» такой высокой чести, что при слове «ферматист», все понимают, что речь идет о полудурке, который «до безумия одержим несбыточной идеей» найти утерянное доказательство теоремы Ферма!

В своем замечании на полях книги Диофанта Ферма писал: «Я нашел поистине удивительное доказательство своему утверждению, но поля книги узки, чтобы его уместить». Так это же был «момент слабости математического гения XVII века». Этот тупица не понимал, что «ошибается», а, скорее всего, он просто «врал», «лукавил».

Если Ферма утверждал, значит, доказательство у него было!? Уровень знаний был не выше, чем у современного десятиклассника, но если какой-то инженер пытается найти это доказательство, то его высмеивают, объявляют безумцем. И совсем другое дело, если американский 10-летний мальчик Э. Уайлс «принимает в качестве исходной гипотезы, что Ферма не мог знать намного больше математики, чем он», и начинает «доказывать» эту «недоказуемую теорему». На такое, естественно, способен только «гений».

Случайно я попал на сайт (works.tarefer.ru›50/100086/index.html), где студентка Читинского ГТУ Кушенко В.В. пишет о Ферма: «...Маленький городок Бомон и все его пять тысяч жителей не в силах осознать, что здесь родился великий Ферма, последний математик-алхимик, решавший праздные задачи грядущих столетий, тишайший судейский крючок, лукавый сфинкс, замучивший человечество своими загадками, осторожный и благонравный чинуша, подтасовщик, интриган, домосед, завистник, гениальный компилятор, один из четырех титанов математики... Ферма почти не выезжал из Тулузы, где осел после женитьбы на Луизе де Лонг, дочери советника парламента. Благодаря тестю он дослужился до звания советника и приобрел вожделенную приставку «де». Сын третьего сословия, практичный отпрыск богатых кожевников, нашпигованный латынью и францисканским благочестием, он не ставил перед собой грандиозных задач в реальной жизни...

В свой бурный век он прожил основательно и тихо. Он не писал философских трактатов, как Декарт, не был наперсником французских королей, как Виет, не воевал, не путешествовал, не создавал математические кружки, не имел учеников и не печатался при жизни... Не обнаружив никаких сознательных претензий на место в истории, Ферма умирает 12 января 1665 года».

Я был потрясен, шокирован... А кто был первым «математиком-алхимиком»!? Что это за «праздные задачи грядущих столетий»!? «Чинуша, подтасовщик, интриган, домосед, завистник»... Откуда у этих зеленых юнцов и юниц столько пренебрежения, презрения, цинизма к человеку, жившему за 400 лет до них!? Какое кощунство, вопиющая несправедливость!? Но, не сами же юнцы все это придумали!? Их надоумили математики, «цари наук», то самое «человечество», которое «лукавый сфинкс» Ферма «замучил своими загадками».

Однако, Ферма не может нести какую-либо ответственность за то, что спесивые, но бездарные потомки триста с лишним лет сшибали свои рога о его школьную теоремку. Унижая, оплевывая Ферма, математики пытаются спасти свою честь мундира!? Но никакой «чести» давно нет, даже «мундира» нет!? Детская задачка Ферма стала величайшим позором «отборной, доблестной» армии математиков мира!?

«Цари наук» опозорились тем, что семь поколений математических «светил» так и не смогли доказать школьную теоремку, которую доказали и П. Ферма, и арабский математик ал-Худжанди за 700 лет до Ферма!? Они опозорились и тем, что вместо признания своих ошибок, ославили П. Ферма обманщиком и стали раздувать миф о «недоказуемости» его теоремы!? Математики опозорились и тем, что уже целое столетие остервенело травят математиков-любителей, «бьют по голове своих братьев меньших». Эта травля стала самым позорным, после утопления Пифагором Гиппаса, деянием математиков во всей истории научной мысли! Они опозорились и тем, что под видом «доказательства» теоремы Ферма, подсунули просвещенному человечеству сомнительное «творение» Э. Уайлса, которое «не понимают» даже самые яркие светила математики!?

410-летний юбилей со дня рождения П. Ферма - это, несомненно, достаточно веский довод для того, чтобы математики, наконец, образумились и перестали бы наводить тень на плетень и восстановили бы доброе, честное имя великого математика. П. Ферма «не обнаружил никаких сознательных претензий на место в истории», но эта своенравная и капризная Дама сама внесла его на руках в свои анналы, зато многих рьяных и ретивых «претендентов» она выплюнула, как изжеванную жвачку. И ничего с этим не поделаешь, всего одна из многих его красивых теорем навечно вписала имя П. Ферма в историю.

Но это уникальное творение Ферма и само уже целое столетие загнано в «подполье», объявлено «вне закона», стало самой презренной и ненавистной задачей во всей истории математики. Но настало время этому «гадкому утенку» математики превращаться в прекрасного лебедя! Удивительная загадка Ферма выстрадала свое право занять достойное место и в сокровищнице математических знаний, и в каждой школе мира рядом со своей сестрой - теоремой Пифагора.

Такая уникальная, изящная задача просто не может не иметь и красивые, изящные решения. Если теорема Пифагора имеет 400 доказательств, то пусть в первое время у теоремы Ферма будет всего 4 простых доказательства. Они есть, постепенно их станет больше!? Я считаю, что 410-летний юбилей П. Ферма - это самый подходящий повод или случай, для того, чтобы математикам-профессионалам образумиться и прекратить, наконец, эту бессмысленную, абсурдную, хлопотную и абсолютно бесполезную «блокаду» любителей!?

Интерес к математике обозначился у Ферма как-то неожиданно и в достаточно зрелом возрасте. В 1629 г. в его руки попадает латинский перевод работы Паппа, содержащий краткую сводку результатов Аполлония о свойствах конических сечений. Ферма, полиглот, знаток права и античной филологии, вдруг задается целью полностью восстановить ход рассуждений знаменитого ученого. С таким же успехом современный адвокат может попытаться самостоятельно воспроизвести все доказательства по монографии из проблем, скажем, алгебраической топологии. Однако, немыслимое предприятие увенчивается успехом. Более того, вникая в геометрические построения древних, он совершает удивительное открытие: для нахождения максимумов и минимумов площадей фигур не нужны хитроумные чертежи. Всегда можно составить и решить некое простое алгебраическое уравнение, корни которого определяют экстремум. Он придумал алгоритм, который станет основой дифференциального исчисления.

Он быстро продвинулся дальше. Он нашел достаточные условия существования максимумов, научился определять точки перегиба, провел касательные ко всем известным кривым второго и третьего порядка. Еще несколько лет, и он находит новый чисто алгебраический метод нахождения квадратур для парабол и гипербол произвольного порядка (то есть интегралов от функций вида y p = Cx q и y p x q = С ), вычисляет площади, объемы, моменты инерции тел вращения. Это был настоящий прорыв. Чувствуя это, Ферма начинает искать общения с математическими авторитетами того времени. Он уверен в себе и жаждет признания.

В 1636 г. он пишет первое письмо Его преподобию Марену Мерсенну: ”Святой отец! Я Вам чрезвычайно признателен за честь, которую Вы мне оказали, подав надежду на то, что мы сможем беседовать письменно; ...Я буду очень рад узнать от Вас о всех новых трактатах и книгах по Математике, которые появилась за последние пять-шесть лет. ...Я нашел также много аналитических методов для различных проблем, как числовых, так и геометрических, для решения которых анализ Виета недостаточен. Всем этим я поделюсь с Вами, когда Вы захотите, и притом без всякого высокомерия, от которого я более свободен и более далек, чем любой другой человек на свете.”

Кто такой отец Мерсенн? Это францисканский монах, ученый скромных дарований и замечательный организатор, в течении 30 лет возглавлявший парижский математический кружок, который стал подлинным центром французской науки. В последствии кружок Мерсенна указом Людовика XIV будет преобразован в Парижскую академию наук. Мерсенн неустанно вел огромную переписку, и его келья в монастыре ордена минимов на Королевской площади была своего рода “почтамтом для всех ученых Европы, начиная от Галилея и кончая Гоббсом”. Переписка заменяла тогда научные журналы, которые появились значительно позже. Сборища у Мерсенна происходили еженедельно. Ядро кружка составляли самые блестящие естествоиспытатели того времен: Робервиль, Паскаль-отец, Дезарг, Мидорж, Арди и конечно же, знаменитый и повсеместно признанный Декарт. Рене дю Перрон Декарт (Картезий), дворянская мантия, два родовых поместья, основоположник картезианства, “отец” аналитической геометрии, один из основателей новой математики, а так же друг и товарищ Мерсенна по иезуитскому колледжу. Этот замечательный человек станет кошмаром для Ферма.

Мерсенн счел результаты Ферма достаточно интересными, чтобы ввести провинциала в свой элитный клуб. Ферма тут же завязывает переписку со многими членами кружка и буквально засыпает письмами самого Мерсенна. Кроме того, он отсылает на суд ученых мужей законченные рукописи: “Введение к плоским и телесным местам”, а год спустя - “Способ отыскания максимумов и минимумов” и “Ответы на вопросы Б. Кавальери”. То, что излагал Ферма, была абсолютная новь, однако сенсация не состоялась. Современники не содрогнулись. Они мало, что поняли, но зато нашли однозначные указание на то, что идею алгоритма максимизации Ферма заимствовал из трактата Иоханнеса Кеплера с забавным названием “Новая стереометрия винных бочек”. Действительно, в рассуждения Кеплера встречаются фразы типа “Объем фигуры наибольший, если по обе стороны от места наибольшего значения убывание сначала нечувствительно”. Но идея малости приращения функции вблизи экстремума вовсе не носилась в воздухе. Лучшие аналитические умы того времени были не готовы к манипуляциям с малыми величинами. Дело в том, что в то время алгебра считалась разновидностью арифметики, то есть математикой второго сорта, примитивным подручным средством, разработанным для нужд низменной практики (“хорошо считают только торговцы”). Традиция предписывала придерживаться сугубо геометрических методов доказательств, восходящих к античной математике. Ферма первый понял, что бесконечно малые величины можно складывать и сокращать, но довольно затруднительно изображать в виде отрезков.

Понадобилось почти столетие, чтобы Жан д’Аламбер в знаменитой “Энциклопедии” признал: “Ферма был изобретателем новых исчислений. Именно у него мы встречаем первое приложение дифференциалов для нахождения касательных”. В конце XVIII века еще более определенно выскажется Жозеф Луи граф де Лагранж: “Но геометры - современники Ферма - не поняли этого нового рода исчисления. Они усмотрели лишь частные случаи. И это изобретение, которое появилось незадолго перед “Геометрией” Декарта, оставалось бесплодным в течении сорока лет”. Лагранж имеет в виду 1674 г., когда вышли в свет “Лекции” Исаака Барроу, подробно освещавшие метод Ферма.

Кроме всего прочего быстро обнаружилось, что Ферма более склонен формулировать новые проблемы, нежели, чем смиренно решать задачи, предложенные метрами. В эпоху дуэлей обмен задачами между учеными мужами был общепринят, как форма выяснения проблем, связанных с субординацией. Однако Ферма явно не знает меры. Каждое его письмо - это вызов, содержащий десятки сложных нерешенных задач, причем на самые неожиданные темы. Вот образчик его стиля (адресовано Френиклю де Бесси): “Item, каков наименьший квадрат, который при уменьшении на 109 и прибавлении единицы даст квадрат? Если Вы не пришлете мне общего решения, то пришлите частное для этих двух чисел, которые я выбрал небольшими, чтобы Вас не очень затруднить. После того как Я получу от Вас ответ, я предложу Вам некоторые другие вещи. Ясно без особых оговорок, что в моем предложении требуется найти целые числа, поскольку в случае дробных чисел самый незначительный арифметик смог бы прийти к цели.” Ферма часто повторялся, формулируя одни и те же вопросы по несколько раз, и откровенно блефовал, утверждая, что располагает необыкновенно изящным решением предложенной задачи. Не обходилось и без прямых ошибок. Некоторые из них были замечены современниками, а кое какие коварные утверждения вводили в заблуждение читателей в течении столетий.

Кружок Мерсенна прореагировал адекватно. Лишь Робервиль, единственный член кружка, имевший проблемы с происхождением, сохраняет дружеский тон писем. Добрый пастырь отец Мерсенн пытался вразумить “тулузского нахала”. Но Ферма не намерен оправдываться: ”Преподобный отец! Вы мне пишете, что постановка моих невозможных проблем рассердила и охладила господ Сен-Мартена и Френикля и что это послужило причиной прекращения их писем. Однако я хочу возразить им, что то, что кажется сначала невозможным, на самом деле не является таковым и что есть много проблем, о которых, как сказал Архимед... ” и т.д..

Однако Ферма лукавит. Именно Френиклю он послал задачу о нахождении прямоугольного треугольника с целочисленными сторонами, площадь которого равна квадрату целого числа. Послал, хотя знал, что задача заведомо не имеет решения.

Самую враждебную позицию по отношению к Ферма занял Декарт. В его письме Мерсенну от 1938 г. читаем: “так как я узнал, что это тот самый человек который перед тем пытался опровергнуть мою “Диоптрику”, и так как Вы сообщили мне, что он послал это после того, как прочел мою “Геометрию” и в удивлении, что я не нашел ту же вещь, т. е. (как имею основание его истолковать) послал это с целью вступить в соперничество и показать, что в этом он знает больше, чем я, и так как еще из ваших писем я узнал, что за ним числится репутация весьма сведущего геометра, то я считаю себя обязанным ему ответить.” Свой ответ Декарт в последствии торжественно обозначит как “малый процесс Математики против г. Ферма”.

Легко понять, что привело в ярость именитого ученого. Во-первых, в рассуждениях Ферма постоянно фигурируют координатные оси и представление чисел отрезками - прием, который Декарт всесторонне развивает в своей только что изданной “Геометрии”. Ферма приходит к идее замены чертежа вычислениями совершенно самостоятельно, в чем-то он даже более последователен, чем Декарт. Во-вторых, Ферма блестяще демонстрирует эффективность своего метода нахождения минимумов на примере задачи о кратчайшем пути светового луча, уточняя и дополняя Декарта с его “Диоптрикой”.

Заслуги Декарта как мыслителя и новатора огромны, но откроем современную “Математическую энциклопедию” и просмотрим список терминов связанных с его именем: “Декартовы координаты” (Лейбниц, 1692) , “Декартов лист”, “Декарта овалы ”. Ни одно из его рассуждений не вошло в историю как “Теорема Декарта”. Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). Вероятно, они вполне справедливо завидовали друг другу. Столкновение было неизбежно. При иезуитском посредничестве Мерсенна разгорается война, длившаяся два года. Впрочем, Мерсенн и здесь оказался прав перед историей: яростная схватка двух титанов, их напряженная, мягко говоря, полемика способствовала осмыслению ключевых понятий математического анализа.

Первым теряет интерес к дискуссии Ферма. По-видимому, он напрямую объяснился с Декартом и больше никогда не задевал соперника. В одной из своих последних работ “Синтез для рефракции”, рукопись которой он послал де ла Шамбру, Ферма через слово поминает “ученейшего Декарта” и всячески подчеркивает его приоритет в вопросах оптики. Между тем именно эта рукопись содержала описание знаменитого “принципа Ферма”, который обеспечивает исчерпывающее объяснение законов отражения и преломления света. Реверансы в сторону Декарта в работе такого уровня были совершенно излишни.

Что же произошло? Почему Ферма, отложив в сторону самолюбие, пошел на примирение? Читая письма Ферма тех лет (1638 - 1640 гг.), можно предположить самое простое: в этот период его научные интересы резко изменились. Он забрасывает модную циклоиду, перестает интересоваться касательными и площадями, и на долгие 20 лет забывает о своем методе нахождения максимума. Имея огромные заслуги в математике непрерывного, Ферма целиком погружается в математику дискретного, оставив опостылевшие геометрические чертежи своим оппонентам. Его новой страстью становятся числа. Собственно говоря, вся “Теория чисел”, как самостоятельная математическая дисциплина, своим появлением на свет целиком обязана жизни и творчеству Ферма.

<…> После смерти Ферма его сын Самюэль издал в 1670 г. принадлежащий отцу экземпляр “Арифметики” под названием “Шесть книг арифметики александрийца Диофанта с комментариями Л. Г. Баше и замечаниями П. де Ферма, тулузского сенатора”. В книгу были включены также некоторые письма Декарта и полный текст сочинения Жака де Бильи “Новое открытие в искусстве анализа”, написанное на основе писем Ферма. Издание имело невероятный успех. Перед изумленными специалистами открылся невиданный яркий мир. Неожиданность, а главное доступность, демократичность теоретико-числовых результатов Ферма породили массу подражаний. В то время мало кто понимал как вычисляется площадь параболы, но каждый школяр мог осознать формулировку Великой теоремы Ферма. Началась настоящая охота за неизвестными и утерянными письмами ученого. До конца XVII в. было издано и переиздано каждое найденное его слово. Но бурная история развития идей Ферма только начиналась.



Похожие статьи